Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 14CQ
FIGURE Q4.14 shows four rotating wheels. For each, determine the signs (+ or -) of w and a.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule01:27
Students have asked these similar questions
A Ferris wheel has a radius of 42.4 feet. The bottom of the Ferris wheel sits 0.8 feet above
the ground. You board the Ferris wheel at the 6 o'clock position and rotate counter-
clockwise.
a. Define a function, f that gives your height above the ground (in feet) in terms of the
angle of rotation (measured in radians) you have swept out from the 6 o'clock
position, a
f(a)-42.4sin(a)+43.2
Preview
b. Define a function, g, that gives your height above the ground (in feet) in terms of the
number of feet you have rotated counter-clockwise from the 6 o'clock position, s.
g(s)=43.2+42.2sin(s/42.4)
Preview
You have been asked to determine if a proposed apparatus to implant ions in silicon
to make better semiconductors will work. The apparatus slows down positive He ions
that have a charge twice that of an electron (He++). It consists of a circular wire that
is connected to a power supply so that it becomes a negatively charged circle. An ion
with a velocity of 200 m/s on a trajectory perpendicular to the plane of the circle is shot
out from the center of the circle. The wire circle has a radius of 3.0 cm and can have a
charge up to 8.0 C. The sample into which the ion is to be implanted is to be placed
2.5 mm from the charged circle. You look up the charge of an electron and mass of the
helium and find them to be 1.6 × 10-19 C and 6.7 x 10-27 kg. [Hint: You want the
ion to come to rest just as it reaches the sample. Use the potential along the axis of a
charged ring and conservation of energy.]
The California sea lion is capable of making extremely fast, tight turns while swimming underwater. In one study, scientists observed a sea lion making a circular turn with a radius of 0.35 m while swimming at 4.2 m/s.a. What is the sea lion’s centripetal acceleration, in units of g?b. What percentage is this acceleration of that of an F-15 fighter jet’s maximum centripetal acceleration of 9g?
Chapter 4 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 4 - a. At this instant, is the particle in FIGURE Q4.1...Ch. 4 - a. At this instant, is the particle in FIGURE Q4.2...Ch. 4 - Tarzan swings through the jungle by hanging from a...Ch. 4 - A projectile is launched at an angle of 30°. a. Is...Ch. 4 - For a projectile, which of the following...Ch. 4 - A cart that is rolling at constant velocity on a...Ch. 4 - A rock is thrown from a bridge at an angle 30°...Ch. 4 - Anita is running to the right at 5 m/s in FIGURE...Ch. 4 - An electromagnet on the ceiling of an airplane...Ch. 4 - Zack is driving past his house in FIGURE Q4.1O. He...
Ch. 4 - II. In FIGURE Q4.11. Yvette and Zack are driving...Ch. 4 - In uniform circular motion, which of the following...Ch. 4 - FIGURE Q4.13 shows three points on a steadily...Ch. 4 - FIGURE Q4.14 shows four rotating wheels. For each,...Ch. 4 - FIGURE Q4.15 shows a pendulum at one end point of...Ch. 4 - Problems I and 2 show a partial motion diagram....Ch. 4 - Prob. 2EAPCh. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - Answer Problems 3 through 5 by choosing one of the...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - A rocket-powered hockey puck moves on a horizontal...Ch. 4 - Prob. 8EAPCh. 4 - A particle moving in the xy- plane has velocity v...Ch. 4 - You have a remote-controlled car that has been...Ch. 4 - A ball thrown horizontally at 25 m/s travels a...Ch. 4 - A physics student on the Planet Exidor throws a...Ch. 4 - A supply plane needs to drop a package of food to...Ch. 4 - A rifle is aimed horizontally at a target 50 m...Ch. 4 - In the Olympic shotput event, an athlete throws...Ch. 4 - On the Apollo 14 mission to the moon, astronaut...Ch. 4 - A baseball player friend of yours wants to...Ch. 4 - A boat takes 3.0 hours to travel 30 km down a...Ch. 4 - When the moving sidewalk at the airport is broken,...Ch. 4 - Prob. 20EAPCh. 4 - A kayaker, needs to paddle north across a...Ch. 4 - Susan, driving north at 60 mph, and Trent, driving...Ch. 4 - FIGURE EX4.23 shows the...Ch. 4 - FIGURE EX4.24 shows the...Ch. 4 - FIGURE EX4.25 shows the...Ch. 4 - The earth’s radius is about 4000 miles. Kampala,...Ch. 4 - An old-fashioned single-play vinyl record rotates...Ch. 4 - As the earth mates, what is the speed of (a) a...Ch. 4 - How fast must a plane fly along the earth’s...Ch. 4 - A 3000-rn-high mountain is located on the equator....Ch. 4 - Peregrine falcons are known for their maneuvering...Ch. 4 - To withstand “g-forces” of up to 10 g’s, caused by...Ch. 4 - The radius of the earth’s very nearly circular...Ch. 4 - A speck of dust on a spinning DVD has a...Ch. 4 - Your roommate is working on his bicycle and has...Ch. 4 - I FIGURE EX4.36 shows the angular velocity graph...Ch. 4 - I FIGURE EX4.37 shows the angular acceleration...Ch. 4 - FIGURE EX4.38 shows the...Ch. 4 - A wheel initially rotating at 60 rpm experiences...Ch. 4 - A 5.0-rn-diameter merry-go-round is initially...Ch. 4 - An electric fan goes from rest to 1800 rpm in 4.0...Ch. 4 - A bicycle wheel is rotating at 50 rpm when the...Ch. 4 - Starting from rest, a DVD steadily accelerates to...Ch. 4 - A spaceship maneuvering near Planet Zeta is...Ch. 4 - equation reference goes here45. A particle moving...Ch. 4 - A projectile’s horizontal range over level ground...Ch. 4 - a. A projectile is launched with speed v0and angle...Ch. 4 - A projectile is launched from ground level at...Ch. 4 - A gray kangaroo can bound across level ground with...Ch. 4 - A ball is thrown toward a cliff of height h with a...Ch. 4 - A tennis player hits a ball 2.0 m above the...Ch. 4 - You are target shooting using a toy gun that fires...Ch. 4 - A 35 g steel ball is held by a ceiling-mounted...Ch. 4 - You are watching an archery tournament when you...Ch. 4 - You’re 6.0 m from one wall of the house seen in...Ch. 4 - Sand moves without slipping at 6.0 m/s down a...Ch. 4 - A stunt man drives a car at a speed of 20 m/s off...Ch. 4 - A javelin thrower standing at rest holds the...Ch. 4 - A rubber ball is dropped onto a ramp that is...Ch. 4 - You are asked to consult for the city’s research...Ch. 4 - Ships A and B leave port together. For the next...Ch. 4 - While driving north at 25 m/s during a rainstorm...Ch. 4 - You’ve been assigned the task of using a shaft...Ch. 4 - Prob. 64EAPCh. 4 - Prob. 65EAPCh. 4 - Astronauts use a centrifuge to simulate the...Ch. 4 - Communications satellites are placed in a circular...Ch. 4 - Prob. 68EAPCh. 4 - A high-speed drill rotating ccw at 2400 rpm comes...Ch. 4 - A turbine is spinning at 3800 rpm. Frication in...Ch. 4 - Prob. 71EAPCh. 4 - The angular velocity of a process control motor is...Ch. 4 - A Ferris wheel of radius R speeds up with angular...Ch. 4 - Prob. 74EAPCh. 4 - A painted tooth on a spinning gear has angular...Ch. 4 - A car starts from rest on a curve with radius of...Ch. 4 - Prob. 77EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - Prob. 79EAPCh. 4 - In Problem 78 through 80 you are given the...Ch. 4 - In one contest at the country fair, seen in FIGURE...Ch. 4 - Prob. 82EAPCh. 4 - Prob. 83EAPCh. 4 - Prob. 84EAPCh. 4 - Prob. 85EAP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 9. A giant bacterium that is large enough to be seen without a microscope is Selenomonas.
Microbiology with Diseases by Body System (5th Edition)
16. Explain some of the reasons why the human species has been able to expand in number and distribution to a g...
Campbell Biology: Concepts & Connections (9th Edition)
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
An atom with a formal charge does not necessarily have more or less electron density than the atoms in the mole...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forwardTwo spheres are launched horizontally from a 1.2 mm -high table. Sphere AA is launched with an initial speed of 4.5 m/sm/s . Sphere BB is launched with an initial speed of 2.5 m/sm/s . A. What is the time for the sphere AA to hit the floor? Express your answer using two significant figures. B. What is the time for the sphere BB to hit the floor? Express your answer using two significant figures.arrow_forwardTwo bugs, Buzz and Crunchy, are siting on a spinning disk on a horizontal plane. Buzz is sitting halfway and Crunchy is sitting at the outer edge as shown. The radius of the disk is 1.4 m and it rotates once every 1.2 s. What is the magnitude of Buzz's acceleration, in m/s2?arrow_forward
- Q. A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length. In all follwing cases enter your answer to two significant figures without units. What is the angle (in degrees) between the centripetal acceleration vector and the total acceleration vector at t=0?arrow_forwardAn object is moving counter-clockwise in uniform circular motion at a constant speed of 3 m/s in a circle of radius 1.2 m. The magnitude of radial acceleration is 7.5 m/s?. Point A is at an angle of 15 degrees from the x axis. Sketching the position, velocity, and acceleration vectors may be helpful. A. Calculate the x and y components of the position vector for point A. B. Calculate the x and y components of the velocity vector for point A. C. Calculate the x and y components of the acceleration vector for point A. +y A +x 15° (0,0)arrow_forwardAn elephant is located at the Earth’s surface at a latitude λ = 46.9 degrees (as defined in the diagram). The radius of the Earth is RE = 6.38×106 m and the Earth rotates once per day, in a time of T = 86,400 s. A: Write an expression for the magnitude ac of the centripetal acceleration of the elephant in terms of variables from the problem statement. B: What is the magnitude of the centripetal acceleration of the elephant as a fraction of g (9.80 m/s2)?arrow_forward
- An archer fish spies a meal of a grasshopper sitting on a long stalk of grass at the edge of the pond in which he is swimming. The fish is to successfully spit at and strike the grasshopper, which is 0.200 m away horizontally and 0.745 m above his mouth. a. What is the minimum speed at which the archer fish must spit? answer in m/s b. What angle (in degrees) above the horizontal must he spit? answer in degreesarrow_forwardA race car moves on a circular track at a uniform speed of 30.0 m/s in a counterclockwise direction. The radius of the track is 75.0 m. What is the direction of the car’s acceleration? b. What is the magnitude of the car’s acceleration?arrow_forwardV01arrow_forward
- Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip. A. Calculate the magnitude (in m/s2) of the centripetal acceleration at the tip of a 3.40 m long helicopter blade that rotates at 240 rev/min. B. Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s). Vtip/VSound =arrow_forwardE. The centripetal acceleration of a particle moving in a circle is given by the formula a = s²/r where r is the radius and s is the speed of the particle. a) Consider a as a function of s and r. Compute the differential of a. b) Suppose that the particle is moving with speed 50cm/sec and the radius is 10cm. Use the differential to estimate the change in centripetal acceleration if the radius is changed to 9.80cm and the speed is changed to 51cm/sec. (Answ: 15) c) Suppose that the speed can be measured to within +3% and the radius can be measured to within +2%. Use the differential to approximate the maximum percent error in a. (Hint: The percent error in a quantity is the error in the quantity (da) divided by the quantity (a).) (Ans: 8%)arrow_forwardTwo spheres are launched horizontally from a 1.2 mm -high table. Sphere AA is launched with an initial speed of 4.5 m/sm/s . Sphere BB is launched with an initial speed of 2.5 m/sm/s . A. What is the distance that sphere AA travels from the edge of the table? Express your answer using two significant figures. B. What is the distance that sphere BB travels from the edge of the table? Express your answer using two significant figures.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY