![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_largeCoverImage.gif)
Concept explainers
A solution contains both iron(II) and iron(III) ions. A sample Of the solution is titrated with 35.0 ml, of M
![Check Mark](/static/check-mark.png)
Interpretation:
The concentration of
Concept introduction:
Number of moles is equal to the ratio of given mass to the molar mass.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles of solute to the volume of the solution in liters.
The mathematical expression is given by:
Molarity =
A solution of salt of metal when reacts with other solution to give products, the formula which is used to find the volume of either solution is given by:
Where, M1 and M2 are molarity of the solution
V1 and V2 are volume of the solution
Answer to Problem 74QAP
Concentration of
Concentration of
Explanation of Solution
Given information:
Volume of sample = 50.0 mL
Volume of
Molarity of
The resulting solution titrated with:
Volume of
Molarity of
The given reaction is:
Divide the above redox reaction into two half reactions that is oxidation half reaction and reduction half reaction.
Oxidation Half reaction:
Reduction half reaction:
Assign oxidation states to each element in the above reactions.
Oxidation Half reaction:
Reduction half reaction:
Balance the elements except oxygen.
Oxidation Half reaction:
Reduction half reaction:
Now, add number of electrons (required) to that side of reaction where reduction occurs.
Oxidation Half reaction:
Reduction half reaction:
Balance the charge by adding
Oxidation Half reaction:
Reduction half reaction:
Balance the hydrogen and oxygen atoms by adding water molecules.
Oxidation Half reaction:
Reduction half reaction:
Multiply the oxidation half reaction with 5 to balance the number of electrons in both reactions.
Oxidation Half reaction:
Reduction half reaction:
Now, add both reactions.
Now,
Molarity =
Convert the volume in mL to L.
Since, 1 L = 1000 mL
Thus, volume in L =
Number of moles of
Number of moles = 0.0280 M× 0.035 L =
According to the reaction, the ratio between
Thus, number of moles of
When the resulting solution titrated again:
Convert the volume in mL to L.
Since, 1 L = 1000 mL
Thus, volume in L =
Number of moles of
According to the reaction, the ratio between
Thus, number of moles of
Number of moles of
Concentration of
Convert the volume in mL to L.
Since, 1 L = 1000 mL
Thus, volume in L =
Concentration of
Concentration of
Concentration of
Concentration of
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry: Principles and Reactions
- Question 7 (10 points) Identify the carboxylic acid present in each of the following items and draw their structures: Food Vinegar Oranges Yogurt Sour Milk Pickles Acid Structure Paragraph ✓ BI UAE 0118 + v Task: 1. Identify the carboxylic acid 2. Provide Name 3. Draw structure 4. Take a picture of your table and insert Add a File Record Audio Record Video 11.arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forwardHighlight each chiral center in the following molecule. If there are none, then check the box under the drawing area. There are no chiral centers. Cl Cl Highlightarrow_forward
- A student proposes the following two-step synthesis of an ether from an alcohol A: 1. strong base A 2. R Is the student's proposed synthesis likely to work? If you said the proposed synthesis would work, enter the chemical formula or common abbreviation for an appropriate strong base to use in Step 1: If you said the synthesis would work, draw the structure of an alcohol A, and the structure of the additional reagent R needed in Step 2, in the drawing area below. If there's more than one reasonable choice for a good reaction yield, you can draw any of them. ☐ Click and drag to start drawing a structure. Yes No ロ→ロ 0|0 G Х D : ☐ பarrow_forwardटे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forward
- Predict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forwardNG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)