(a)
Interpretation:
The molarity of 25.00 mL solution of iron(III) nitrate should be determined which reacts with 12.54 mL of 0.1488 M sodium carbonate.
Concept introduction:
Number of moles is equal to the ratio of given mass to the molar mass.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles of solute to the volume of the solution in liters.
The mathematical expression is given by:
Molarity =
A solution of salt of metal when reacts with other solution to give products, the formula which is used to find the volume of either solution is given by:
Where, M1 and M2 are molarity of the solution
V1 and V2 are volume of the solution
(b)
Interpretation:
The molarity of 25.00 mL solution of iron(III) nitrate should be determined which reacts with 7.58 g of potassium phosphate.
Concept introduction:
Number of moles is equal to the ratio of given mass to the molar mass.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles of solute to the volume of the solution in liters.
The mathematical expression is given by:
Molarity =
A solution of salt of metal when reacts with other solution to give products, the formula which is used to find the volume of either solution is given by:
Where, M1 and M2 are molarity of the solution
V1 and V2 are volume of the solution
(c)
Interpretation:
The molarity of 25.00 mL solution of iron(III) nitrate should be determined which reacts with 10.00 mL of 0.1573 M
Concept introduction:
Number of moles is equal to the ratio of given mass to the molar mass.
The mathematical expression is given by:
Number of moles =
Molarity is defined as the ratio of number of moles of solute to the volume of the solution in liters.
The mathematical expression is given by:
Molarity =
A solution of salt of metal when reacts with other solution to give products, the formula which is used to find the volume of either solution is given by:
Where, M1 and M2 are molarity of the solution
V1 and V2 are volume of the solution
Trending nowThis is a popular solution!
Chapter 4 Solutions
Chemistry: Principles and Reactions
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardThe Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forward
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardOnly 100% sure experts solve it correct complete solutions need to get full marks it's my quiz okkkk.take your time but solve full accurate okkk chemistry expert solve itarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning