Concept explainers
(a)
Interpretation:
The oxidation state of all atoms in nitrogen oxide should be assigned.
Concept introduction:
The
Oxidation is the process in which either loss of electrons takes place, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons takes place, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the number assigned to the elements in a chemical combination and this number represents the electrons which an atom can share, lose or gain to form
Therefore, transfer of electrons refers to the oxidation state.
(b)
Interpretation:
The oxidation state of all atoms in ammonia should be assigned.
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons takes place, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons takes place, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the number assigned to the elements in a chemical combination and this number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(c)
Interpretation:
The oxidation state of all atoms in potassium peroxide should be assigned.
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons takes place, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons takes place, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the number assigned to the elements in a chemical combination and this number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
(d)
Interpretation:
The oxidation state of all atoms in chlorate ion (
Concept introduction:
The chemical reaction in which both oxidation and reduction process takes place is known as redox reaction. In this reaction, transfer of electrons takes place among the elements.
Oxidation is the process in which either loss of electrons takes place, oxidation number increases, or loss of hydrogen atoms takes place. An element is oxidized, when oxidation number increases.
Reduction is the process in which either gain of electrons takes place, oxidation number decreases, or gain of hydrogen atoms takes place. An element is reduced, when oxidation number decreases.
Oxidation state is also known as oxidation number. It is defined as the number assigned to the elements in a chemical combination and this number represents the electrons which an atom can share, lose or gain to form chemical bonding with an atom of another element.
Therefore, transfer of electrons refers to the oxidation state.
Trending nowThis is a popular solution!
Chapter 4 Solutions
Chemistry: Principles and Reactions
- Several square planar complexes are known for Gold (III) ions but not for Silver (III) why?arrow_forwardAiter running various experiments, you determine that the mechanism for the following reaction is bimolecular. CI Using this information, draw the correct mechanism in the space below. X Explanation Check C Cl OH + CI Add/Remove step Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Carrow_forwardComplete the reaction in the fewest number of steps as possible, Draw all intermediates (In the same form as the picture provided) and provide all reagents.arrow_forward
- Please provide steps to work for complete understanding.arrow_forwardPlease provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning