Concept explainers
A spring cannon is located at the edge of a table that is 1.20 m above the floor. A steel ball is launched from the cannon with speed vi at 35.0° above the horizontal. (a) Find the horizontal position of the ball as a function of vi at the instant it lands on the floor. We write this function as x(vi). Evaluate x for (b) vi = 0.100 m/s and for (c) vi = 100 m/s. (d) Assume vi is close to but not equal to zero. Show that one term in the answer to part (a) dominates so that the function x(vi) reduces to a simpler form. (c) If vi is very large, what is the approximate form of x(v)? (f) Describe the overall shape of the graph of the function x(vi).
(a)
The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
Formula to calculate the vertical distance covered by the ball is,
Here,
The vertical component of the velocity is,
Here,
Substitute
Substitute
Solve the equation (2).
Formula to calculate the horizontal distance covered by the ball is,
Here,
The horizontal component of the velocity is,
Substitute
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(b)
The horizontal position of the ball as
Answer to Problem 73AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(c)
The horizontal position of the ball as
Answer to Problem 73AP
The horizontal position the ball as
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(d)
The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (IV),
The value of
Substitute
Conclusion:
Therefore, the horizontal position of the ball as a function of
(e)
The horizontal position of the ball as a function of
Answer to Problem 73AP
The horizontal position of the ball as a function of
Explanation of Solution
Given info: The located at the spring cannon is
From equation (4),
The term is
Conclusion:
Therefore, the horizontal position of the ball as a function of
(f)
The overall shape of the graph of the function
Answer to Problem 73AP
In starting condition graph
Explanation of Solution
Given info: The located at the spring cannon is
The graph of
Conclusion:
Therefore, the starting condition graph
Want to see more full solutions like this?
Chapter 4 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Two objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forwardA box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA toy car speeds up at 1.0 m/s2 while rolling down a ramp, and slows down at a rate of 2.0 m/s2 while rolling up the same ramp. What is the slope of the ramp in degrees? Grade in %? The friction coefficient?arrow_forwardPlz solution should be complete No chatgpt pls will upvote .arrow_forward
- A box with friction coefficient of 0.2 rests on a 12 foot long plank of wood. How high (in feet) must one side of the plank be lifted in order for the box to begin to slide?arrow_forwardWhat is a good general rule to follow in order to find the best choice of coordinate system to solve a dynamics problem?arrow_forwardWhat is the meaning of a first order approximation?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning