Concept explainers
A basketball star covers 2.80 m horizontally in a jump to dunk the ball (Fig. P4.12a). His motion through space can be modeled precisely as that of a particle at his center of mass, which we will define in Chapter 9. His center of mass is at elevation 1.02 m when he leaves the floor. It reaches a maximum height of 1.85 m above the floor and is at elevation 0.900 m when he touches down again. Determine (a) his time of flight (his “hang time”), (b) his horizontal and (c) vertical velocity components at the instant of takeoff, and (d) his takeoff angle. (e) For comparison, determine the hang time of a whitetail deer making a jump (Fig. P4.12b) with center of mass elevations yi = 1.20 m, ymax = 2.50 m, and yf = 0.700 m.
Figure P4.12
(a)
The time of flight of the basketball star.
Answer to Problem 24P
The time of flight of the basketball star is
Explanation of Solution
Section 1:
To determine: The initial velocity of basketball star to go up.
Answer: The initial velocity of basketball star to go up is
Given information:
The horizontal distance covered by the basket ball star is
From the instant the star leaves the floor until just before he lands, the basketball star is a projectile.
The equation to calculate the upward motion of his flight is,
Substitute
Section 2:
To determine: The final velocity of basketball star to go up.
Answer: The initial velocity of basketball star to go up is
Given information:
The horizontal distance covered by the basket ball star is
Substitute
Section 3:
To determine: The time of flight of the basketball star.
Answer: The time of flight of the basketball star is
Given information:
The horizontal distance covered by the basketball star is
The equation to calculate the hang time of basketball star is,
Substitute
Conclusion:
Therefore, the time of flight of the basketball star is
(b)
The horizontal velocity component of the basketball star at take off.
Answer to Problem 24P
The horizontal velocity component of the basketball star at take off is
Explanation of Solution
Given information:
The horizontal distance covered by the basket ball star is
The formula to calculate horizontal velocity component of the basketball star is,
Substitute
Conclusion:
Therefore, the horizontal velocity component of the basketball star at take off is
(c)
The vertical velocity component of the basketball star at takeoff.
Answer to Problem 24P
The vertical velocity component of the basketball star at takeoff is
Explanation of Solution
Given information:
The horizontal distance covered by the basketball star is
From the section 1 of part (a), the vertical component of the velocity of the basketball star at takeoff is,
Conclusion:
Therefore, the vertical velocity of the basketball star at takeoff is
(d)
The takeoff angle.
Answer to Problem 24P
The takeoff angle is
Explanation of Solution
Given information:
The horizontal distance covered by the basket ball star is
The formula to calculate take off angle is,
Substitute
Conclusion:
Therefore, the takeoff angle is
(e)
The time of flight of the deer.
Answer to Problem 24P
The time of flight of the deer is
Explanation of Solution
Section 1:
To determine: The upward velocity of deer going up.
Answer: The upward velocity of deer going up is
Given information:
The horizontal distance covered by the basketball star is
Substitute
Section 2:
To determine: The upward velocity of deer going down.
Answer: The downward velocity of deer going down is
Given information:
The horizontal distance covered by the basketball star is
Substitute
Section 3:
To determine: The time of flight of the deer.
Answer: The time of flight of the deer is
Given information:
The horizontal distance covered by the basketball star is
The equation to calculate the hang time of deer is,
Substitute
Conclusion:
Therefore, the time of flight of deer is
Want to see more full solutions like this?
Chapter 4 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- 6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forward
- ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning