Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 69AP
(a)
To determine
To determine: The required speed of the package be travelled completely around the moon and return its original location.
(b)
To determine
To determine: The required time interval to the trip around the moon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An eagle is flying horizontally at 7.7 m/s with a fish in its claws. It accidentally drops the fish. (in seconds)
(a) How much time passes before the fish's speed quadruples?(b) How much additional time would be required for the fish's speed to quadruple again?
An eagle is flying horizontally at 7.6 m/s with a fish in its claws. It accidentally drops the fish. (a) How much time passes before the fish's speed doubles? (b) How much additional time would be required for the speed to double again?
OK, this is the last time for one of these crazy adventures. THIS time, though, there is a window in the floor,
and you can see that you re in a rocket which has just taken off from the surface an alien planet. By taking
careful measurements out that window you determine that the rocket is accelerating upward at 8.14 m/s^2.
When you drop a ball from a height of 2.15 m, it hits the floor 0.200 s later. What is the value of g for the alien
world below you?
Chapter 4 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 4.1 - Consider the following controls in an automobile...Ch. 4.3 - (i) As a projectile thrown at an upward angle...Ch. 4.3 - Rank the launch angles for the five paths in...Ch. 4.4 - A particle moves in a circular path of radius r...Ch. 4.5 - A particle moves along a path, and its speed...Ch. 4 - Prob. 1OQCh. 4 - Entering his dorm room, a student tosses his book...Ch. 4 - A student throws a heavy red ball horizontally...Ch. 4 - Prob. 4OQCh. 4 - Does a car moving around a circular track with...
Ch. 4 - An astronaut hits a golf ball on the Moon. Which...Ch. 4 - Prob. 7OQCh. 4 - Prob. 8OQCh. 4 - A sailor drops a wrench from the top of a...Ch. 4 - A baseball is thrown from the outfield toward the...Ch. 4 - A set of keys on the end of a string is swung...Ch. 4 - A rubber stopper on the end of a string is swung...Ch. 4 - Prob. 13OQCh. 4 - A spacecraft drifts through space at a constant...Ch. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Describe how a driver can steer a car traveling at...Ch. 4 - A projectile is launched at some angle to the...Ch. 4 - Construct motion diagrams showing the velocity and...Ch. 4 - Explain whether or not the following particles...Ch. 4 - Prob. 1PCh. 4 - When the Sun is directly overhead, a hawk dives...Ch. 4 - Suppose the position vector for a particle is...Ch. 4 - The coordinates of an object moving in the xy...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - The vector position of a particle varies in time...Ch. 4 - It is not possible to see very small objects, such...Ch. 4 - Prob. 9PCh. 4 - Review. A snowmobile is originally at the point...Ch. 4 - Mayan kings and many school sports teams are named...Ch. 4 - Prob. 12PCh. 4 - In a local bar, a customer slides an empty beer...Ch. 4 - Prob. 14PCh. 4 - A projectile is fired in such a way that its...Ch. 4 - Prob. 16PCh. 4 - Chinook salmon are able to move through water...Ch. 4 - Prob. 18PCh. 4 - The speed of a projectile when it reaches its...Ch. 4 - Prob. 20PCh. 4 - A firefighter, a distance d from a burning...Ch. 4 - Prob. 22PCh. 4 - A placekicker must kick a football from a point...Ch. 4 - A basketball star covers 2.80 m horizontally in a...Ch. 4 - A playground is on the flat roof of a city school,...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - A student stands at the edge of a cliff and throws...Ch. 4 - Prob. 30PCh. 4 - A boy stands on a diving board and tosses a stone...Ch. 4 - A home run is hit in such a way that the baseball...Ch. 4 - The athlete shown in Figure P4.21 rotates a...Ch. 4 - In Example 4.6, we found the centripetal...Ch. 4 - Prob. 35PCh. 4 - A tire 0.500 m in radius rotates at a constant...Ch. 4 - Review. The 20-g centrifuge at NASAs Ames Research...Ch. 4 - An athlete swings a ball, connected to the end of...Ch. 4 - The astronaut orbiting the Earth in Figure P4.19...Ch. 4 - Figure P4.40 represents the total acceleration of...Ch. 4 - Prob. 41PCh. 4 - A ball swings counterclockwise in a vertical...Ch. 4 - (a) Can a particle moving with instantaneous speed...Ch. 4 - The pilot of an airplane notes that the compass...Ch. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - A police car traveling at 95.0 km/h is traveling...Ch. 4 - A car travels due east with a speed of 50.0 km/h....Ch. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - A river flows with a steady speed v. A student...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - A farm truck moves due east with a constant...Ch. 4 - A ball on the end of a string is whirled around in...Ch. 4 - Prob. 56APCh. 4 - Prob. 57APCh. 4 - A particle starts from the origin with velocity...Ch. 4 - Prob. 59APCh. 4 - Prob. 60APCh. 4 - Lisa in her Lamborghini accelerates at...Ch. 4 - A boy throws a stone horizontally from the top of...Ch. 4 - Prob. 63APCh. 4 - Prob. 64APCh. 4 - Prob. 65APCh. 4 - Prob. 66APCh. 4 - Why is the following situation impossible? Albert...Ch. 4 - As some molten metal splashes, one droplet flies...Ch. 4 - Prob. 69APCh. 4 - A pendulum with a cord of length r = 1.00 m swings...Ch. 4 - Prob. 71APCh. 4 - A projectile is launched from the point (x = 0, y...Ch. 4 - A spring cannon is located at the edge of a table...Ch. 4 - An outfielder throws a baseball to his catcher in...Ch. 4 - A World War II bomber flies horizontally over...Ch. 4 - Prob. 76APCh. 4 - Prob. 77APCh. 4 - Prob. 78APCh. 4 - A fisherman sets out upstream on a river. His...Ch. 4 - Prob. 80APCh. 4 - A skier leaves the ramp of a ski jump with a...Ch. 4 - Two swimmers, Chris and Sarah, start together at...Ch. 4 - Prob. 83CPCh. 4 - Prob. 84CPCh. 4 - Prob. 85CPCh. 4 - A projectile is fired up an incline (incline angle...Ch. 4 - A fireworks rocket explodes at height h, the peak...Ch. 4 - In the What If? section of Example 4.5, it was...Ch. 4 - Prob. 89CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what Initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7m/s2 .arrow_forward(a) A spaceship is projected vertically upward from the Earth's surface with an initial speed of 6.91 km/s, but unfortunately does not have a great enough speed to escape Earth's gravity. What maximum height does the spaceship reach (in m)? Ignore air resistance. m (b) A meteoroid falls from a height of 1.91 x 107 m above the surface of the Earth. What is the speed (in m/s) when the meteorite hits the Earth? Assume the meteoroid is initially at rest with respect to the Earth. (Note that a meteorite is a meteoroid that makes it to Earth's surface.) m/s Need Help? Read Itarrow_forwardA boy throws a stone horizontally with an initial speed of 20 m/s from the edge of a cliff. A stop watch measures the stone's trajectory time from the top of the cliff to the bottom to be 5.0 s. (a) What is the height of the cliff? (b) How far does the stone travel horizontally? (c) What is the total acceleration of the stone while it is in the air?arrow_forward
- A rotating fan completes 1200 revolutions every minute. Consider the tip of a blade, at a radius of 0.15 m. (a) Through what distance does the tip move in one revolution? What are (b) the tip’s speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?arrow_forwardA spacecraft on its way to Mars has small rocket engines mounted on its hull; one on its left surface and one on its back surface. At a certain time, both = 5.10 m/s², while the one on the back gives engines turn on. The one on the left gives the spacecraft an acceleration component in the x direction of a, 7.30 m/s2. The engines turn off after firing for 170 s, at which point the spacecraft has velocity = 4244 m/s. What was the magnitude and the direction of the spacecraft's initial velocity before the engines were an acceleration component in the y direction of a, %3D components of v Vx 3695 m/s and v, %3D turned on? Express the magnitude as m/s and the direction as an angle measured counterclockwise from the +x axis. magnitude m/s direction ° counterclockwise from the +x-axisarrow_forwardThe NEXT morning, you wake up in a strange room yet again, and this time you drop a ball from a height of 1.18 m above the floor. The ball hits the floor 0.147 s after your drop it. You guess that you must have been taken to an alien planet with gravity different from Earth s. What is this planet s g (that is, the magnitude of the acceleration due to gravity on this planet)?arrow_forward
- Here we go again (yes, this set of questions is starting to feel like Groundhog Day). You AGAIN wake up in a strange room, and this time you drop a ball from a height of 1.42 m, and observe that it hits the floor 0.269 s after you drop it. In this case you suspect you are in deep space, far from any planet or star, and that your rocket is accelerating due to the push of its own engines under the floor. In this case, what must the acceleration of your rocket be?arrow_forwardOK, this is the last time for one of these crazy adventures. THIS time, though, there is a window in the floor, and you can see that you re in a rocket which has just taken off from the surface of an alien planet. By taking careful measurements out that window you determine that the rocket is accelerating upward at 8.07 m/s^2. When you drop a ball from a height of 1.46 m, it hits the floor 0.245 s later. What is the value of g for the alien world below you?arrow_forwardA satellite in outer space is moving at a constant velocity of 21.2 m/s in the +y direction when one of its onboard thruster turns on, causing an acceleration of 0.330 m/s² in the +x direction. The acceleration lasts for 44.0 s, at which point the thruster turns off. (a) What is the magnitude of the satellite's velocity when the thruster turns off? m/s (b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis. ° counterclockwise from the +x-axisarrow_forward
- You stand still and throw a ball straight upwards with an initial speed of 7.50 m/s. You then repeat this experiment while on a moving sidewalk that is moving horizontally with a speed of 0.500 m/s. How high does the ball go?arrow_forwardA stone is thrown vertically down from the top of a tower 100 m high with an initial speed of 30 m/s. (a) what is the speed at the end of 2sec? (b) How long a time is required to reach the ground? (c) with what speed does it strike the ground?arrow_forwardA rock is thrown straight downward near the Earth’s surface with initial velocity of 20m/s down. Assuming it doesn’t reach the ground, after 4 seconds its speed will be aboutarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY