A playground is on the flat roof of a city school, 6.00 m above the street below (Fig. P4.25). The vertical wall of the building is h = 7.00 m high, forming a 1-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of θ = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. (b) Find the vertical distance by which the ball clears the wall. (c) Find the horizontal distance from the wall to the point on the roof where the ball lands. Figure P4.25
A playground is on the flat roof of a city school, 6.00 m above the street below (Fig. P4.25). The vertical wall of the building is h = 7.00 m high, forming a 1-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of θ = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. (b) Find the vertical distance by which the ball clears the wall. (c) Find the horizontal distance from the wall to the point on the roof where the ball lands. Figure P4.25
Solution Summary: The author explains the initial velocity of the ball, which is 18.1 m/s, according to figure P4.25.
A playground is on the flat roof of a city school, 6.00 m above the street below (Fig. P4.25). The vertical wall of the building is h = 7.00 m high, forming a 1-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of θ = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (a) Find the speed at which the ball was launched. (b) Find the vertical distance by which the ball clears the wall. (c) Find the horizontal distance from the wall to the point on the roof where the ball lands.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.