Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 46P
In the situation described in Problem 45 and Figure P4.45, the masses of the rope, spring balance, and pulley are negligible. Nick’s feet are not touching the ground. (a) Assume Nick is momentarily at rest when he stops pulling down on the rope and passes the end of the rope to another child, of weight 440 N, who is standing on the ground next to him. The rope does not break. Describe the ensuing motion. (b) Instead, assume Nick is momentarily at rest when he ties the end of the rope to a strong hook projecting from the tree trunk. Explain why this action can make the rope break.
Figure P4.45
Problems 45 and 46.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 3
Cables A and B are Supporting a 185-lb wooden crate.
What is the magnitude of the tension force in each
cable?
A
20°
35°
185 lbs
The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)
PROBLEM 4
What is the resultant of the force system acting on the
connection shown?
25
F₁ = 80 lbs
IK
65°
F2 = 60 lbs
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forward
- Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forward
- After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License