Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 10CQ
(a)
To determine
The throw force exceed the gravitational force or not and the way by which the ball move.
(b)
To determine
The throw force equal to the gravitational force or not.
(c)
To determine
The strength of throw force.
(d)
To determine
The reason for which the ball move away from the child’s hand.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a) Find the magnitude of the gravitational force between a planet with the mass 7.50 x 10^24 Kg and its moon, with mass 2.70 x 10^22 Kg, if the average distance between their centers is 2.80 x 10^8 m.
b) What is the acceleration of the moon towards the planet?
c)What is the acceleration of the planet towards the moon?
A block of mass M slides down a frictionless plane inclined at an angle è with the
horizontal. The gravitational force is directed
a) parallel to the plane in the same direction as the movement of the block.
b) perpendicular to the plane.
O c) parallel to the plane in the opposite direction as the movement of the block
d) toward the center of the Earth.
(a) Find the magnitude of the gravitational force (in N) between a planet with mass 7.75 x 1024 kg and its moon, with mass 2.20 x 1022 kg, if the average distance between their
centers is 2.90 x 10° m.
(b) What is the moon's acceleration (in m/s?) toward the planet? (Enter the magnitude.)
m/s2
(c) What is the planet's acceleration (in m/s²) toward the moon? (Enter the magnitude.)
m/s?
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the law of universal gravitation, Newton assumed that the force was proportional to the product of the two masses (m1m2) . While all scientific conjectures must be experimentally verified, can you provided arguments as to why this must be? (You may wish to consider simple examples in which any other form would lead to contradictory results.)arrow_forwardThe gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forward(a) Find the magnitude of the gravity force between a planet with mass 5.98 1024 kg and its moon, with mass 7.36 1022 kg, if the average distance between them is 3.84 108 m. (b) What is the acceleration of the moon toward the planet? (c) What is the acceleration of the planet toward the moon? (See Section 7.5.)arrow_forward
- A 200-kg object and a 500-kg object are separated by 4.00 m. (a) Find the net gravitational force exerted by these objects on a 50.0-kg object placed midway between them. (b) At what position (other than an infinitely remote one) can the 50.0-kg object be placed so as to experience a net force of zero from the other two objects?arrow_forwardHow far from the center of the Sun would the net gravitational force of Earth and the Sun on a spaceship be zero?arrow_forwardThe Earth has mass 5.98 × 1024 kg, the Moon has mass 7.35 × 1022 kg, and the distance between them is 384, 000 km. (a) Determine the magnitude of the force that the Earth exerts on the Moon. (b) Determine the magnitude of the force that the Moon exerts on the Earth. (c) Determine the Moon's acceleration, assuming that it orbits the centre of the Earth at a constant speed. m/s? (d) Determine the Moon's speed, assuming that it travels at a constant speed in a circular orbit around the Earth. m/s (e) Determine the circumference of the Moon's orbit, assuming that it travels at a constant speed in a circular orbit around the Earth. m (f) Determine the period of the Moon's orbit, assuming that it travels at a constant speed in a circular orbit around the Earth. S = daysarrow_forward
- Please asaparrow_forwardCh.4 #28 . Please see attached image for Physics question . Thank youarrow_forwardA spaceship is in orbit around the earth at an altitude of 12000 miles. Which one of the followingstatements best explains why the astronauts experience “weightlessness”?(a) The centripetal force of the earth on the astronaut in orbit is zero Newton. (b) The pull of the earthon the spaceship is canceled by the pull of the other planets. (c) The spaceship is in free fall and itsfloor cannot press upwards on the astronauts. (d) The force of gravity decreases as the inverse squareof the distance from the earth’s center. (e) The force of the earth on the spaceship and the force ofthe spaceship on the earth cancel because they are equal in magnitude but opposite in direction.arrow_forward
- For this problem, assume that the earth is a perfect sphere. Also, assume that if your mass is m, then the earth exerts a gravitational force on you of magnitude mg, where g = 9.8 m/s2 at all points of the earth's surface. a) Your mass is m = will the scale read? (Thanks to the Third Law, this is the same as asking for the normal force exerted on you by the scale.) b) Next you go to the Equator and stand on a scale. What does it read? The radius of the earth is 6.4 × 106 m. c) Suppose the earth were rotating so quickly that objects became “weightless" at the equator. How long would the day be? 50 kg. If you are standing on a scale at the North Pole, whatarrow_forwarda) What must be the separation (2). between a 5,200 kg body and a 2,400 kg body for their gravitational attraction to have a magnitude of F=2.3x10 12 N. b) Gravity on the moon is g = 1.62 m/s?. What is the weight of a man on the moon who weighs 60 N on Earth.arrow_forwardYou are seated 1.5 m away from your best friend. One of you has a mass of 60 kg and the other has a mass of 70 kg. a) What is the magnitude of the gravitational force that each one of you exerts on the other? B) What is the direction of this force?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY