(a)
The components of the particle’s velocity at
(a)
Answer to Problem 5P
The
Explanation of Solution
Formula to calculate net force acts on a particle is,
Here,
Formula to calculate acceleration of a particle is,
Here,
Substitute
Substitute
Formula to calculate the velocity of the particle is,
Here,
Substitute
Conclusion:
Therefore, the
(b)
The direction of the motion of the particle at
(b)
Answer to Problem 5P
The direction of the particle’s motion at
Explanation of Solution
Formula to calculate the direction of the moving particle is,
Here,
Substitute
Conclusion:
Therefore, the direction of particle’s motion at
(c)
The displacement of the particle during
(c)
Answer to Problem 5P
The displacement of the particle during
Explanation of Solution
Formula to calculate the displacement of the particle is,
Here,
Substitute
Conclusion:
Therefore, the displacement of the particle during
(d)
The coordinates of the particle at
(d)
Answer to Problem 5P
The coordinates of the particle at
Explanation of Solution
The initial position of the particle is
The final coordinates of the particle at
Conclusion:
Therefore, the coordinates of the particle at
Want to see more full solutions like this?
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
- A particle moving in the xy plane follows a path described as a function of time by i(t) = (3.4 m/s)tî - (2.8 m/s?)tj. A constant force given by F = (5.0î - 2.0j) N acts on the particle (note that other forces must act on the particle as well if it follows the path given above). (a) Determine the displacement of the particle during the interval t = 1.0 s to t = 4.0 s. AT = îm - m (b) Calculate the work done by F during this interval. W =arrow_forwardA space probe of mass 5.00 x 104 kg is traveling at 1.10 x 104 m/s through deep space. No forces act on the probe except that generated by its own engine. No forces act on the probe except that generated by its own engine. The engine exerts a constant external force of 4.00 x 105 N, directed parallel to the displacement, which is 2.50 x 106 m. Determine the final velocity of the probe.arrow_forwardA block (mass = 5.56 kg) is released from rest at the top of a frictionless ramp. 1.01 seconds after release, the block has a speed of 6.34 m/s. Calculate the angle of the ramp in degrees as measured from the horizontal.arrow_forward
- At a particular instant, a 1.0-kg particle’s position is r → = (2.0i ^ − 4.0j ^ + 6.0k ^ )m , its velocity is v → = (−1.0i ^ + 4.0j ^ + 1.0k ^ )m/s , and the force on it is F → = (10.0i ^ + 15.0j ^ )N . (a) What is the angular momentum of the particle about the origin? (b) What is the torque on the particle about the origin? (c) What is the time rate of change of the particle’s angular momentum at this instant?arrow_forwardI need help with question 2.arrow_forwardTwo constant forces act on an object of mass m = 4.30 kg object moving in the xy plane as shown in the figure below. Force F, is 26.5 N at 35.0°, and force F, is 48.0 N at 150°. At time t = 0, the object is at the origin and has velocity (3.50î + 2.15j) m/s. 150° 35.0° (a) Express the two forces in unit-vector notation. F, - N (b) Find the total force exerted on the object. N (c) Find the object's acceleration. m/s2 Now, consider the instant t = 3.00 s. (d) Find the object's velocity. m/s (e) Find its position. (f) Find its kinetic energy from V½mv2. kJ (g) Find its kinetic energy from 2mv,2 + EF · AF. kJarrow_forward
- Chapter 05, Problem 010 GO A 0.180 kg particle moves along an x axis according to x(t) = - 14.0 + 2.00 t + 4.00 2- 5.00 t, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.30 s ? Give an expression for the (a) x, (b) y and (c) z components. (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER powered by MapleNet ere to search 1:51 PM ENG 4/4/2021 ASUS 19home prt sc pause break delete f10 end f1Pgup f12Pgdn insert & 21 4. 8 backspo-arrow_forwardA particle of mass 1.05 kg is subject to a force that is always pointed towards the East but whose magnitude changes linearly with time t. The magnitude of the force is given as F = 4t, and has units of newtons. Let the x-axis point towards the East. Determine the change in x-coordinate in meters of the particle Δx between t = 0 and t = 2.4 if the initial velocity is 17.5 m/s, and pointed in the same direction as the force.arrow_forwardTwo forces, 1 = (−6.55î + 4.75ĵ) N and 2 = (−4.05î + 6.40ĵ) N, act on a particle of mass 2.20 kg that is initially at rest at coordinates (+2.30 m, +4.10 m). In what direction is the particle moving at t = 10.1 s? What displacement does the particle undergo during the first 10.1 s? What are the coordinates of the particle at t = 10.1 s?arrow_forward
- A mass m₁ = 4.0 kg is suspended over a massless frictionless pulley and is attached with a. massless rope to a mass on a frictionless horizontal table, mt = 2.0 kg. This mass is itself attached to another suspended mass m2 = 6.0 kg again with a massless rope over a massless and frictionless pulley. (a) Find the velocity of each mass when m2 falls a distance 20. cm (the masses start atarrow_forwardFor t < 0, an object of mass m experiences no force and moves in the positive x direction with a constant speed vi. Beginning at t = 0, when the object passes position x = 0, it experiences a net resistive force proportional to the square of its speed: net = −mkv2î, where k is a constant. The speed of the object after t = 0 is given by v = vi/(1 + kvit). (a) Find the position x of the object as a function of time. (Use the following as necessary: k, m, t, and vi.)x(t) = (b) Find the object's velocity as a function of position. (Use the following as necessary: k, m, t, vi, and x.) v(t)=arrow_forwardA drone is being directed across a frictionless ice covered lake. The mass of the drone is 1.50 kg, and its velocity is 3.00i ^ m/s . After 10.0 s, the velocity is 9.00i ^ + 4.00j ^ m/s . If a constant force in the horizontal direction is causing this change in motion, find (a) the components of the force and (b) the magnitude of the force.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON