Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 3OQ
To determine
The acceleration of the puck in outer space.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
One way to determine the coefficients of friction (μs and μk) between two surfaces is to use an incline plane. Consider a block of mass m = 2.0kg initially at rest at the top of the ramp. The angle θ is increased slowly. The object starts to slide down the ramp when θ = 40 . Once the block slides down, the angle is kept constant. The block travels along the ramp by distance d = 2.0 m in time t = 1.5 s.
(a) Determine the value of μs(b) Determine the value of μk
A man pushes an object to the right and exerts a force which has a horizontal compotent of F = 33 N. A horizontal frictional force has a magnitude of f = 15 N which opposed the horizontal component of the fushing force. The mass of the object is m = 31 kg.
Write an expression for the magnitude of the acceleration of the object.
If the object starts at rest what is the speed in meters per second at t = 2.00s?
If the man stops pushing the object at t = 2.00s and the firctional force is constant what is the distance in meters does to object slide before coming to a rest?
An SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m
Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is
the numeric value, in newtons, for the net force in Part (a)? .
Chapter 4 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 4.1 - Which of the following statements is most correct?...Ch. 4.4 - An object experiences no acceleration. Which of...Ch. 4.4 - You push an object, initially at rest, across a...Ch. 4.5 - Prob. 4.4QQCh. 4.6 - (i) If a fly collides with the windshield of a...Ch. 4.6 - Which of the following is the reaction force to...Ch. 4.7 - Consider the two situations shown in Figure 4.8,...Ch. 4 - Prob. 1OQCh. 4 - Prob. 2OQCh. 4 - Prob. 3OQ
Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have always been impressed by the speed of the elevators in the IDS building in Minneapolis. You wonder about the maximum acceleration for these elevators. You decide to measure it by using your bathroom scale. While the elevator is at rest on the ground floor, you get in, put down your scale, and stand on it. The scale reads 130 lbs. You continue standing on the scale while the elevator goes up, carefully watching the reading. During the trip to the 50th floor, the greatest scale reading was 180 lbs.arrow_forwardA 4.0 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale at t = 3.0 s? on the Fx axis is set by Fxs = 5.0 N. In unit-vector notation, what is P at (a)t = 3.0 s and (b)t = 6.0 s,(c) what is Fx (N) F A 6 8 -F -t (s)arrow_forwardA 20 kg crate travels along a smooth slope of y = (1/8)x^3/2 . If at a point its speed is 25 m/sec where x = 18m, determine the normal force exerted by the slope to the crate. Also, what is its acceleration.arrow_forward
- A 4 kg particle moves along an x axis according to x(t) = −1 + 4t − 5t3, with x in metersand t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3 s? assume g= 10m/s^2arrow_forwardA 75-kg snowboarder has an initial velocity of 5 m/s and slides down a 92-m-long straight incline from an initial height 54 m and finally comes to rest after sliding horizontally a distance x. The coefficients of kinetic friction are 0.15 and 0.18 on the slope and on the horizontal surface, respectively. (a) What is his velocity at the bottom of the slope? 33.00577 X m/s (b) What is x? marrow_forwardA block of mass 8.3 kg is initially at rest on a horizontal plane. The coefficients of kinetic and static friction between the plane and the block are respectivelyμc= 0.25 and μe= 0.36. Consider g = 10 m/s2 A horizontal force of magnitude F = 26.3 N is then applied to the block. In this situation, calculate the magnitude of the friction force (in N, to one decimal place).arrow_forward
- A 1,652-kg car starts from rest at the top of a driveway 7.03 m long that is sloped at an angle of 38 degrees with the horizontal. If an average friction force of 3,382 N impedes the motion of the car, find the speed (in m/s) of the car at the bottom of the driveway. Use the approximation that g ≈ 10 m/s2.arrow_forwardA 3.0 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale on the Fx axis is set by Fxs = 7.0 N. In unit-vector notation, what is P at (a)t = 2.0s and (b)t = 9.0 s,(c) what is att = 7.0 s? (a) Number 14 (b) Number i 63 (c) Number i <•+ + 0 0 0 Fx (N) F -F 2 4 + + 6 0 0 0 t(s) k Units k Units k Units kg.m/s or N-s kg.m/s or N-sarrow_forwardA 5.2 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale on the Fx axis is set by Fxs = 3.2 N. In unit-vector notation, what is Pat (a)t = 4.0s and (b)t = 7.0 s.(c) what is at t= 9.0 s? F, (N) (a) Number (b) Number 4 7 (c) Number i 1 8 3.2 3.2 F (+ (+ i 20 i 54.4 i 3.2 k Units k Units k Units kg-m/s or N-s kg-m/s or N-s kg-m/s or N-sarrow_forward
- A toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, taken as the xy plane. The 5.80-kg puck has a velocity of 2.001 m/s at one instant. Eight seconds later, its velocity is (6.001 + 8.0ĵ) m/s. (a) Assuming the rocket engine exerts a constant horizontal force, find the components of the force. Î + (b) Find its magnitude. Narrow_forwardA 3.0 kg toy car can move along an x axis. The figure gives Fx of the force acting on the car, which begins at rest at time t = 0. The scale on the Fx axis is set by Fxs = 3.0 N. In unit-vector notation, what is P at (a)t = 9.0 s and (b)t = 5.0 s,(c) what is ý att = 3.0 s? XS F,(N) t (s) 4 -F. (a) Number i k Units (b) Number i k Units (c) Number i k Units + + > <'N +arrow_forwardA person whose weight is 516 N is being pulled up vertically by a rope from the bottom of a cave that is 30.5 m deep. The maximum tension that the rope can withstand without breaking is 593 N. What is the shortest time, starting from rest, in which the person can be brought out of the cave?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY