EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.44P
To determine
Power of compressor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the compressor and expander have to be assumed to have an actual efficiency that is less than ideal. Suppose the air cooled to room temperature before expanding it. Considering that the adiabatic efficiency of the compressor is 78% and the efficiency of the expander (a turbine) is 82%, how efficient will the system be as an energy store?
17. A fully inflated tire has a volume of 15 ft3. The pressure and temperature of theair in the tire are 65 psia and 75 F, respectively. At this condition, the air intakeneedle is depressed for 3 s and then released. Treating air as an ideal gas and assumingsmall changes in the tire temperature and volume, Find the amount of air that leftthe tire. Assume a discharge coefficient of 0.61 and a flow area of 0.01 in2.
please answer all with complete solution, thank youu.
Chapter 4 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - Prob. 4.15PCh. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - Prob. 4.21PCh. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - Prob. 4.28PCh. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - Prob. 4.33PCh. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Prob. 4.36PCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - Prob. 4.38PCh. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - Prob. 4.42PCh. 4 - A compressor brings R-134a from...Ch. 4 - Prob. 4.44PCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.46PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Prob. 4.50PCh. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Prob. 4.52PCh. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - Prob. 4.62PCh. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - Prob. 4.85PCh. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.92PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - Prob. 4.100PCh. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - Prob. 4.105PCh. 4 - Prob. 4.106PCh. 4 - Prob. 4.107PCh. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - Prob. 4.110PCh. 4 - Assume a setup similar to that of the previous...Ch. 4 - Prob. 4.112PCh. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - Prob. 4.115PCh. 4 - Prob. 4.116PCh. 4 - Prob. 4.117PCh. 4 - Prob. 4.118PCh. 4 - Prob. 4.119PCh. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Prob. 4.123EPCh. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.125EPCh. 4 - Prob. 4.126EPCh. 4 - Prob. 4.127EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Prob. 4.131EPCh. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.135EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - Prob. 4.139EPCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.142EPCh. 4 - Prob. 4.143EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.145EPCh. 4 - Prob. 4.146EPCh. 4 - Prob. 4.147EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.151EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - Prob. 4.154EPCh. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.157EPCh. 4 - Prob. 4.158EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.160EPCh. 4 - Prob. 4.161EPCh. 4 - Prob. 4.162EPCh. 4 - Prob. 4.163EPCh. 4 - Prob. 4.164EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2: 26 tons of ice from and at 0°C is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 26°C to -15°C. The vapour is dry and saturated at the end of compression. Assuming actual COP is 62% of theoretical, calculate the power required to drive the compressor. Take latent heat of ice 335 kJ/kg.arrow_forwardHelium is compressed through a compressor steadily. At the inlet the pressure is P₁ = 100kPa and the temperature is T₁ = 300K At the exit the pressure is P₂=600kPa and the temperature is T₂=390K. The power input is W = 5000kW and the heat loss rate is Q=1000kJ/s during this process. Neglect the kinetic and potential energy changes. Assume helium is ideal gas with a constant specific heat c=5.1926 kJ/kg-K and its specific heat ratio k=-=1.667, which means that enthalpy can be P С calculated using h=c_T. Select the simplified the energy balance equation for this process P o+m(h₁-h₂) = 0 A. -Q - W out B. (Q-Q) + (W-w + in in ou out ·ė -W₁ +m(h₁-h₂) = 0 out in in V V2 1 Σm (h+ = 2 +82) - Σm (1 - – Σm(h+ in D._ Q +W+m(h₁₂-h₂2) = 0 out V² 2 dE +gz)]=. system dtarrow_forwardAn ideal gas is compressed through a compressor. At the inlet, the pressure is P1 = 100.00 kPa, and the temperature is T1 = 300.00 K. At the exit, the pressure is P2 = 400.00 kPa, and the temperature is T2 = 330.00 K. The mass flow rate is = 20.00 kg/s . The shaft power input is = 800.00 kW. There is heat loss during the process. The gas constant is R = 0.2870 kPa·m3/(kg·K), and specific heat is Cp=1.0050 kJ/kg·K. Determine the heat loss rate during the process_______(kJ/s)arrow_forward
- In a refrigerator the pressure in the evaporator us 2.72 kg/cm sq. and the refrigerant entry is 0.12 dry while at the exit 0.91 dry. During the compression, the work done per kg is 17,033 kg-m/kg. Calculate the COP. The rate of refrigerant circulation is 5.64 kg/min. The given latent heat and specific volume at 2.72 kg/cm sq are 320 kcal/kg ang 0.436 cu m/kg.arrow_forwardAn air compressor has a suction volume of 0.35 cubic meter/sec at 28 deg. C and 101.325 Kpa and discharges 700 kpa. Determine the amount of power saved by the compressor in two staging?arrow_forwardAir is compressed steadily by a compressor from 100 kPa and 27°C to 800 kPa and 290°C. The mass flow rate of the air is 15 kg/min. During the process, the heat is lost from the compressor at a rate of 15 kW to the surrounding at 27°C. Assume air to be an ideal gas and the changes in kinetic and potential energies can be neglected.arrow_forward
- Air at the rate of 25 kg/min is compressed in a centrifugal compressor from 1 bar to 2 bar. The temperature increases from 15°C to 105°C during compression. Determine actual and minimum power required to run the compressor. The surrounding air temperature is 15°C. Neglect the changes in K.E. and P.E.arrow_forwardExhaust steam from the turbine enters an insulated surface condenser at the rate of 1 kg/s at a pressure of 10 kPa with an enthalpy of 2345.35 kJ/kg. Saturated liquid water leaves the condenser at a temperature of 45.81C. Find the flow of cooling water in L/min, used by the condenser if the temperature rise is 10C.arrow_forwardRefrigerant R-134a to the compressor of a refrigeration machine It enters at 140 kPa pressure and -10 °C, and exits at 1 MPa pressure. Volumetric flow of the refrigerant entering the compressor It is 0.23 m³/minute. The refrigerant enters the throttling valve at a pressure of 0.95 MPa and at 30 °C, and exits the evaporator as saturated steam at -18 °C. Adiabatic efficiency of the compressor It is 78%. Show the cycle in the T-s diagram. And; a) Calculate the power required to run the compressor. b) Calculate the heat absorbed per unit time from the cooled medium. ( COPSM=? ) c) Calculate, between the evaporator and the compressor, how much the pressure of the refrigerant drops and how much the heat gain.arrow_forward
- Water at 180 degrees Celsius (Psat = 1.0 MPa) and 13 MPa enters a boiler. It then leaves the boiler at 500 degrees Celsius. What is the mass flowrate of water?arrow_forwardcompressor delivers 2270 kg/min of water with an initial pressure of 12 psia to a final pressure of 40 psia. The diameter of the inlet pipe is 0.15 m and the diameter of the discharge pipe is .10 m. What is the work done by the compressor in KW?arrow_forwardDetermine the electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of.the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). There is a 150W rate of heat loss from the boiler during this process to a surrounding at 293.2 k. Consider steady state conditions.Calculate the total rate of entropy production inarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY