EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.54P
To determine
The rate of heat transfer in the boiler and super heater.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the quality and internal energy of steam at 700 kPa and enthalpy of 2600 kJ/kg.
o At the inlet to a certain nozzle, the
enthalpy of the gas is 3000 kJ/kg and
velocity is negligible. At the discharge end
of the nozzle, the enthalpy is 2762 kJ/kg.
The nozzle is horizontal and flow through
the nozzle is adiabatic find the velocity of
gas at the nozzle exit.
The power of a steam turbine in a thermal power plant is 60 MW. Water vapor enters the turbine at 3MPa pressure, 4000C temperature and 50 m / s speed, 10 kPa pressure, 0.9 dry degree and 200 m / s speed leaves the turbine. Considering the turbine as adiabatic;
1-Find the mass flow of steam
2-Find the turbine outlet cross-sectional area, its ratio (A2 / A1) to the inlet cross-sectional area.
Chapter 4 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - Prob. 4.15PCh. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - Prob. 4.21PCh. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - Prob. 4.28PCh. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - Prob. 4.33PCh. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Prob. 4.36PCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - Prob. 4.38PCh. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - Prob. 4.42PCh. 4 - A compressor brings R-134a from...Ch. 4 - Prob. 4.44PCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.46PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Prob. 4.50PCh. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Prob. 4.52PCh. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - Prob. 4.62PCh. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - Prob. 4.85PCh. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.92PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - Prob. 4.100PCh. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - Prob. 4.105PCh. 4 - Prob. 4.106PCh. 4 - Prob. 4.107PCh. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - Prob. 4.110PCh. 4 - Assume a setup similar to that of the previous...Ch. 4 - Prob. 4.112PCh. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - Prob. 4.115PCh. 4 - Prob. 4.116PCh. 4 - Prob. 4.117PCh. 4 - Prob. 4.118PCh. 4 - Prob. 4.119PCh. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Prob. 4.123EPCh. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.125EPCh. 4 - Prob. 4.126EPCh. 4 - Prob. 4.127EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Prob. 4.131EPCh. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.135EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - Prob. 4.139EPCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.142EPCh. 4 - Prob. 4.143EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.145EPCh. 4 - Prob. 4.146EPCh. 4 - Prob. 4.147EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.151EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - Prob. 4.154EPCh. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.157EPCh. 4 - Prob. 4.158EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.160EPCh. 4 - Prob. 4.161EPCh. 4 - Prob. 4.162EPCh. 4 - Prob. 4.163EPCh. 4 - Prob. 4.164EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piston/cylinder has a water volume separated in VA = 0.3 m³ and VB = 0.4 m by a stiff membrane. The initial state in A is 1000 kPa, x = 0.8 and in B it is 1500 kPa and 250°C. Now the membrane ruptures and the water comes to a uniform state at 200°C. What is the final pressure? Find the work and the heat transfer in the process. Po mp cb A:H2O B:H20arrow_forwardsteam at 11 MPa has a specific volume of 0.0196 m^3/kg , find the temperature, the enthalpy, and the internal energy.arrow_forwardTwo rigid tanks are filled with water. Tank A is 0.2 m³ at 100 kPa, 150°C and tank B is 0.3 m³ at saturated vapor 300 kPa. The tanks are connected by a pipe with a closed valve. We open the valve and let all the water come to a single uniform state while we transfer enough heat to have a final pressure of 300 kPa. Give the two property values that determine the final state and find the heat transfer. B Aarrow_forward
- Q2: One mole of air at P: and temperature Ti is compressed at constant volume till its pressure doubled. Then it is allowed to expand reversibly and isothermally to the original pressure and finally restored to the originol temperature by cooling at constant pressure. Sketch the processes on a P-V and calculate the net work done by thearrow_forwardA nozzle is a device for increasing the velocity of a steadily flowing stream of fluid, At the inlet to a certain nozzle the enthalpy of the fluid is 3025 kJ/kg and the velocity is 60m's. At the exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it. (a) Find the velocity at the nozzle exit. (b) If the inlet area is 0.1 m’and the specific volume at the inlet is 0.19 m²/kg, find the rate of flow of fluid (C) If the specific volume at the nozzle exit is 0.5 m kg, find the exit area of the nozzle. Dr. Hameed J. Khalaf Subject Lecturearrow_forwardFour kilograms of steams is initially at 1 MPa and x=40% inside the piston cylinder. There is a 30C superheat introduced in steam isopiestically.Find the change of entropy of the steam.arrow_forward
- 3kg of Co2 expanded in a stationary piston cylinder through a polytropic process from 30 degree Celsius and 250 kpa to 100kPa pressure. If the polytropic exponent, n = 1.45, find the total work, total heat transferred, total kinetic energy change and internal energy changearrow_forwardSaturated water vapor at 85 ° C comes out of a turbine and condenses on the outer surface of a cooling pipe 2 in diameter and 20 m long at a rate of 90 kg / hr. Find the rate of heat transfer from the steam to the cooling pipe.arrow_forwardA nozzle is a device for measuring the velocity of flow. At inlet to a nozzle the enthalpy is 3026 kJ/k, the velocity is 60 m/s. At exit from the nozzle the enthalpy is 2790 kJ/kg. The nozzle is horizontal and there is a negligible heat loss from the nozzle. Find he velocity at nozzle exit The inlet area is 0.1 m2 and the specific volume at the inlet is 0.19 m²/s, find the mass flow rate • f the specific volume at the nozzle exit is 0.5 m²/kg, find the exit area of the nozzle (688m/s) (0.36kg/s) (0.0299m2) Air and fuel enter a furnace used for home heating. The air has an enthalpy of 320 kJ/kg and the fuel has an enthalpy of 43027 kJ/kg. The gases leaving the furnace has an enthalpy of 616 kJ/kg. There are 17 kgair / kgfuel, water circulated through the wall furnace receiving heat. The hose required 17.02 kW of heat, what is the fuel consumption per day. (41 kg/day)arrow_forward
- 6. Find the enthalpy of Helium in kJ/kg if its internal energy is 200 kJ/kg.arrow_forwardHow much entropy is transferred if 200 W of thermal energy are transferred to a heat sink at 300K?arrow_forwardA piston/cylinder has a water volume separated in VA = 0.2 m3 and VB = 0.3 m3 by a stiff membrane (Fig. P3.139). The initial state in A is 1000 kPa, x = 0.75 and in B it is 1600 kPa and 250°C. Now the membrane ruptures and the water comes to a uniform state at 200°C. What is the final pressure? Find the work and the heat transfer in the process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license