EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.116P
To determine
The expression for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the magnitude of the work for the process ,ASAP in 20min i will upvote
A perfect gas has a mass 1.2 kg
and pressure 0.8 bar and volume
0.5
m3
This gas is compressed and
undergoes to polytropic process
according
a law (PV1.3=C) until pressure
become (57 (bar. And
then, the gas is expanded at
iso-thermal process until final
volume returns
to initial volume. Calculate work
done in polytroic process and the
change
entropy in each process. Take y =
1.4 and R = 0. 288 kJ/kg.K
%3D
e 3:52
An ideal gas is compressed from a volume of V, = 6.00 L to a volume of V, = 3.00 L while in thermal contact with a heat reservoir at T = 295 K as in the figure below. During the compression process, the piston
moves down a distance of d = 0.145 m under the action of an average external force of F = 21.0 kN.
(a) Find the work done on the gas.
kJ
(b) Find the change in internal energy of the gas.
k)
(c) Find the thermal energy exchanged between the gas and the reservoir.
kJ
(d) If the gas is thermally insulated so no thermal energy could be exchanged, what would happen to the temperature of the gas during the compression?
O The temperature would decrease.
O The temperature would remain constant.
O The temperature would increase.
Chapter 4 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - Prob. 4.15PCh. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - Prob. 4.21PCh. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - Prob. 4.28PCh. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - Prob. 4.33PCh. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Prob. 4.36PCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - Prob. 4.38PCh. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - Prob. 4.42PCh. 4 - A compressor brings R-134a from...Ch. 4 - Prob. 4.44PCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.46PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Prob. 4.50PCh. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Prob. 4.52PCh. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - Prob. 4.62PCh. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - Prob. 4.85PCh. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.92PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - Prob. 4.100PCh. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - Prob. 4.105PCh. 4 - Prob. 4.106PCh. 4 - Prob. 4.107PCh. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - Prob. 4.110PCh. 4 - Assume a setup similar to that of the previous...Ch. 4 - Prob. 4.112PCh. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - Prob. 4.115PCh. 4 - Prob. 4.116PCh. 4 - Prob. 4.117PCh. 4 - Prob. 4.118PCh. 4 - Prob. 4.119PCh. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Prob. 4.123EPCh. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.125EPCh. 4 - Prob. 4.126EPCh. 4 - Prob. 4.127EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Prob. 4.131EPCh. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.135EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - Prob. 4.139EPCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.142EPCh. 4 - Prob. 4.143EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.145EPCh. 4 - Prob. 4.146EPCh. 4 - Prob. 4.147EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.151EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - Prob. 4.154EPCh. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.157EPCh. 4 - Prob. 4.158EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.160EPCh. 4 - Prob. 4.161EPCh. 4 - Prob. 4.162EPCh. 4 - Prob. 4.163EPCh. 4 - Prob. 4.164EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q3//500 litre of air is compressed in a cylinder fitted with a frictionless piston from 150 KPa and 20 °℃ to 600 KPa, and 120 °C in a polytropic process (PV=C). Find the work (W) and heat (H). R = 0.287 KJ/kg.Karrow_forwardExample (7.2): A rigid tank with volume of 1 m³, contains air with 300 kPa and 300°C heated by external heart source. The valve is open allowed to part of air exit to the surrounding according to the relation of PV" = constant, then the valve is close when the final pressure in tank reaches to 100 kPa. Determine the heat transfer to the tank. Assuming n = 1.2.arrow_forwardI am getting lost in this practice problem for thermodynamics - thank you! Air at 100 kPa and 280K is compressed steadily to 600 kPa and 400K in an air compressor. The mass flow rate of air through the compressor is 0.02 kg/s and the compressor a heat loss of 16 kJ/kg from the compressor occurs. Assuming steady state steady flow conditions and ideal gas behavior (with constant specific heats, Cp=1.009 kJ/kgK, R=0.287 kJ/kgK, determine: a) The necessary power in put to the compressor(kW).b) The volumetric flow rate of air at the exit of the compressor (m3/s).arrow_forward
- A tank contains R134a initially at 3 degrees Celsius with a quality of 0.25. the pressure is held constant by nitrogen gas acting against a flexible bladder as shown. The valve is opened between the tank and a supply line carrying R134a at 975kPa, 118 degrees Celsius. The pressure regulator allows the pressure in the tank to remain constant as the bladder expands. The valve between the line and the tank closed at the instant when it contains 20kg of R134a with a quality of 0.95. if the entropy generation amounts to 1.025 kj/k, determine: Initial mass of r134a in the tank (kg) Heat transferred (kj) Is heat absorbed or released in the process Show mass, energy and entropy balance equations when starting Initial state, state at inlet, final state H1,s1,h2,s2arrow_forwardQ1: A-For a reversible polytropic process prove the relation between heat supplied and input for a perfect gas can written as Q = (-)W.arrow_forwardA perfect gas has a mass 1.2 kg and pressure 0.8 bar and volume 0.5 m³. This gas is compressed and undergoes to polytropic process according a law (PV¹.3-C) until pressure become (65) bar. And then, the gas is expanded at iso-thermal process until final volume returns to initial volume. Calculate work done in polytroic process and the change entropy in each process. Take y = 1.4 and R = 0.288 kJ/kg.Karrow_forward
- At the inlet of a steam turbine, the pressure and the temperature of the steam are P1 = 1 MPa and T1 = 300 C respectively, its outlet pressure and quality are P2 = 7.5 kPa, x2 = 0.9, respectively. Assuming that the environmental temperature is To = 20 C and the ambient pressure is Po = 100 kPa, and the changes in kinetic and potential energies are negligible; a) Calculate the work done by the steam. b) If an isentropic expansion process could take place between the inlet conditions and the outlet pressure, how much work would be done by the steam? c) Show both the real and isentropic expansion processes on a T-s diagram (including saturation lines and T, x, P values). d) Determine the maximum work done by unit mass of the steam at the specified inlet conditions. e) Determine the maximum work done by unit mass of the steam between inlet and outlet states.arrow_forwardTake time but solve all ßolutions with handwritingarrow_forwardQ6. A 500 W heater is used to melt 5 kg of solid ice at -30°C to gas at +130°C at a constant pressure of 100 kPa. (a) Show the process on the p-T-v, p-v and T-v diagrams (b) Find the change in the total volume of the water (c) Find the energy the heater must provide to the water (d) Find the time the process will take assuming uniform T in the waterarrow_forward
- Q4: A diffuser, has air entering at 100 kPa, 280 K, with a velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm2. At the exit, the area is 860 mm2, and the exit velocity is 20 m/s. Determine the exit pressure and temperature of the air. Take Cp=1.005 KJ/kg.K A: 280 K B: 300 K C: 320 K OD: 340 Karrow_forwardFind the temperature of the following using the ideal gas law:(a) water, P=10KPa, v=30m^3/kg(b) water, P=10MPa, v=0.019m^3/kgarrow_forwardAlso, for each of the compression processes described in the following picture, determine the following: a. The temperature at State 2, T2. b. The work done, W. Do the relative magnitudes of the work for the various processes match what you would expect by examining the P-V paths?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License