EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.15P
To determine
The mass flow rate, the inlet velocity and the outgoing volume flow rate in
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. An open system has a mass flow rate of 1 kg/s the enthalpy, velocity, height of
entry are: 232 KJ/kg, 91 m/s, and 98m. At exit these quantities are: 230 KJkg, 15
m/s, 3.35m. If the heat received by the system is 10 KJ/s. What is the work done
by the system per minute?
A steady state flow compressor draws in 14170 li/min of air whose density is 1.267 kg/m3 and discharge it with density of 4.88 kg/m3. At the suction, P1-103.42 kPa, at the discharge, p2=551.584 kPa. Thge increase in specific internal energy is 78.45 kJ/kg and the heat from air by cooling is 30.173 kJ/kg. Neglecting the change of potential and kinetic energy, determine the work done on the system in kJ/min.
(b) Steam at 4 MPa and 400 °C enters a nozzle steadily with a velocity of 60 m/s, and it leaves at 2 MPa and
ii.
iii.
iv.
V.
i.
300 °C. The inlet area of the nozzle is 50 cm², and heat is being lost at the rate of 75 kW.
Write the energy balance equation for this process.
The mass flow rate of the steam, kg/s.
The outlet velocity of the steam, m/s.
The outlet area of the nozzle, m².
Calculate the velocity of the steam at the outlet if the inlet and outlet pressure, temperature, and
mass flow rate are the same, but the nozzle is well insulated (adiabatic process), m/s.
Chapter 4 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - Prob. 4.15PCh. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - Prob. 4.21PCh. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - Prob. 4.28PCh. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - Prob. 4.33PCh. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Prob. 4.36PCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - Prob. 4.38PCh. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - Prob. 4.42PCh. 4 - A compressor brings R-134a from...Ch. 4 - Prob. 4.44PCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.46PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Prob. 4.50PCh. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Prob. 4.52PCh. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - Prob. 4.62PCh. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - Prob. 4.85PCh. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.92PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - Prob. 4.100PCh. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - Prob. 4.105PCh. 4 - Prob. 4.106PCh. 4 - Prob. 4.107PCh. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - Prob. 4.110PCh. 4 - Assume a setup similar to that of the previous...Ch. 4 - Prob. 4.112PCh. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - Prob. 4.115PCh. 4 - Prob. 4.116PCh. 4 - Prob. 4.117PCh. 4 - Prob. 4.118PCh. 4 - Prob. 4.119PCh. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Prob. 4.123EPCh. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.125EPCh. 4 - Prob. 4.126EPCh. 4 - Prob. 4.127EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Prob. 4.131EPCh. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.135EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - Prob. 4.139EPCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.142EPCh. 4 - Prob. 4.143EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.145EPCh. 4 - Prob. 4.146EPCh. 4 - Prob. 4.147EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.151EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - Prob. 4.154EPCh. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.157EPCh. 4 - Prob. 4.158EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.160EPCh. 4 - Prob. 4.161EPCh. 4 - Prob. 4.162EPCh. 4 - Prob. 4.163EPCh. 4 - Prob. 4.164EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Thermodynamics 1arrow_forward4. A compressor draws in 500 min ft³ of air whose density is 0.079 lb and discharges lb At the suction, P, = 15 - lb it with a density of 0.304 and at the discharge, in? lb The increase in the specific internal energy is 33.8 Btu and the lb P2 = 80 in? Btu heat from the air by cooling is 13. Neglecting changes in the potential and lb Btu kinetic energy determine the work done on the air in min and in horsepower.arrow_forwardAir at 15 degree Celsius and 95 kpa enters the diffuser of a jet engine and steadily with a velocity of 250 m/s. The inlet area of the diffuser is 0.5 m^2. The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Find the mass flow of air, temperature of air leaving diffuser, power and rate of heat transfer within diffuser.arrow_forward
- Refrigerant 134a enters a well-insulated nozzle at 200 lbf/in, 170F, with a velocity of 120 fts and exits at 50 ibt/in with a velocity of 1500 ft/s. For steady-state operation, and neglecting potential energy effects, determine the temperature, in "F and the quality of the refrigerant at the exit. T:- 295 "F 07.3arrow_forwardQ4: A diffuser, has air entering at 100 kPa, 280 K, with a velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm2. At the exit, the area is 860 mm2, and the exit velocity is 20 m/s. Determine the exit pressure and temperature of the air. Take Cp=1.005 KJ/kg.K OA: 280 K OB: 300 K OC: 320 K D: 340 Karrow_forwardQ4: A diffuser, has air entering at 100 kPa, 280 K, with a velocity of 200 m/s. The inlet cross-sectional area of the diffuser is 100 mm2. At the exit, the area is 860 mm2, and the exit velocity is 20 m/s. Determine the exit pressure and temperature of the air. Take Cp=1.005 KJ/kg.K A: 280 K B: 300 K C: 320 K OD: 340 Karrow_forward
- Q4: Why the stroke length of the racing cars' engines is always smaller than its bore diameter?arrow_forward848 kJ/kg, 2. Steam enters a turbine with a pressure of P₁ = 4,502 kPa, a, specific internal energy u₁ = mass flow rate of 1.5 kg/s and density of p₁ = 1.498 kg/m³. Steam leaves at P2 = 2996 kPa Heat loss from the with a density of p2 = 2.5 kg/m³ and a specific internal energy of u2 = 1096 kJ/kg device by radiation is 50 kJ/kg. Neglecting the changes in kinetic and potential energies, determine the power produced by the systen Answer:arrow_forwardQ4: A centrifugal fan for ventilation plant has inlet and outlet area of 0.14 m2 and 0.15 m2 respectively. The static pressure of the fan inlet is -120 Pa and the static pressure of the fan outlet is 200 Pa. The fan consume about 1 kw when deliver 2 m3/s. Determine; a- The total pressure of the fan inlet and outlet. b- Fan total pressure and fan static pressure. c- Total and static fan efficiency.arrow_forward
- Solvearrow_forward4. In a natural gas pipe line compressor, 110 m³/min of propane is compressed polytropically. The inlet pressure is 101 kPaa and the temperature is 38°C. The process follows pV1.08 = C. The exit pressure is 510 kPaa. Determine (a) the exit temperature in kelvins, (b) the mass flow rate in kg/s, and (c) the heat loss in kW. Draw the P-V and T-S diagramsarrow_forward3. A desktop computer is to be cooled by a fan whose flow rate is 0.34 m/min. Determine the mass flow rate of air, in kg/s, through the fan at an elevation of 3400 m where the air density is 0.7 kg/m³. Also, if the average velocity of air is not to exceed 110 m/min, find the diameter of the casing of the fan, in mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license