EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.162EP
To determine
The exit temperature of air.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A fan delivers 8.2 m³ /s of air at static pressure 250 kPa when the speed of fan is 256 rpm and
requires a power of 34 kW. If the fan speed is changed to 300 rpm, find the new air flow rate,
static pressure and the power required.
3.) An air compressor handles 8.5 m’/min of with a density of 1.26 kg/m³ and a pressure of 1
atm, and it discharges at 445 kPa (gage) with a density of 4.86 kg/m³. The change in
specific internal energy across the compressor is 82 kJ/kg, and the heat loss by cooling is 24
kJ/kg. Neglecting changes in kinetic and potential energies, find (a) the work in kJ/kg and
(b) the power in kW.
In the jet impact experiment, water jet impacts on a curved vane in the
vertical direction. As shown in the figure below, the exit has an angle with respect to
the vertical direction. The distance from the nozzle to the vane surface at the exit is h.
The water volume flow rate is measured to be Q, the density of water is p, and the cross
section area of the nozzle is A₁. Assume that the flow has reached the steady state.
(1)
Use the Bernoulli's equation to determine the velocity Vout at the exit of
the vane. Assume that friction between water and the curved vane can be neglected.
(2)
Apply the Reynolds transport theorem to derive the expression of the
impact force F, on the curved vane (neglect the jet weight).
(3)
Under the condition of a fixed volume flow rate Q, determine the maximum
impact force Fr,max that can be obtained when the angle varies (e.g. in different vane
designs).
Va out
9
Ao
Vout
h
Chapter 4 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Ch. 4 - A temperature difference drives a heat transfer...Ch. 4 - What is the effect can be felt upstream in a flow?Ch. 4 - Prob. 4.3PCh. 4 - Air at 500 kPa is expanded to l00 kPa in two...Ch. 4 - A windmill takes out a fraction of the wind...Ch. 4 - An underwater turbine extracts a fraction of the...Ch. 4 - A liquid water turbine at the bottom of a dam...Ch. 4 - You blow a balloon up with air. What kinds of work...Ch. 4 - Storage tanks of cryogenic liquids (O2,N2,CH4) are...Ch. 4 - A large brewery has a pipe of cross-sectional area...
Ch. 4 - A pool is to be filled with 60m3 water from a...Ch. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - A boiler receives a constant flow of 5000kg/h...Ch. 4 - Prob. 4.15PCh. 4 - Liquid water at 15°C flows out of nozzle straight...Ch. 4 - A nozzle receives an ideal gas flow with a...Ch. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - The wind is blowing horizontally at 30m/s in a...Ch. 4 - Prob. 4.21PCh. 4 - A meteorite hits the upper atmosphere at 3000m/s ,...Ch. 4 - Carbon dioxide is throttled from 20C,2000kPa to...Ch. 4 - Saturated liquid R-410A at 25°C is throttled to...Ch. 4 - Carbon dioxide used as a natural refrigerant flows...Ch. 4 - Liquid water at 180C,2000kPa is throttled into a...Ch. 4 - Methane at 1MPa,250K is throttled through a valve...Ch. 4 - Prob. 4.28PCh. 4 - A steam turbine has an n1et of 3kg/s water at 1200...Ch. 4 - Air at 20m/s,1500K,875kPa with 5kg/s flows into a...Ch. 4 - Solve the previous problem using Table A.7.Ch. 4 - A wind turbine can extract at most a fraction...Ch. 4 - Prob. 4.33PCh. 4 - A liquid water turbine receives 2kg/s water at...Ch. 4 - A small high-speed turbine operating on compressed...Ch. 4 - Prob. 4.36PCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - Prob. 4.38PCh. 4 - R-410A in a commercial refrigerator flows into the...Ch. 4 - A compressor brings nitrogen from 100kPa,290K to...Ch. 4 - A refrigerator uses the natural refrigerant carbon...Ch. 4 - Prob. 4.42PCh. 4 - A compressor brings R-134a from...Ch. 4 - Prob. 4.44PCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Prob. 4.46PCh. 4 - The air conditioner in a house or a car has a...Ch. 4 - A boiler section boils 3kg/s saturated liquid...Ch. 4 - A superheater takes 3kg/s saturated water vapor in...Ch. 4 - Prob. 4.50PCh. 4 - Carbon dioxide enters a steady-state, steady-flow...Ch. 4 - Prob. 4.52PCh. 4 - A chiller cools liquid water for air-conditioning...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Liquid nitrogen at 90K,400kPa flows into a probe...Ch. 4 - Liquid glycol flows around an engine, cooling it...Ch. 4 - An irrigation pump takes water from a river at...Ch. 4 - A pipe from one building to another flows water at...Ch. 4 - A river flowing at 0.5m/s across a 1-m-high and...Ch. 4 - Prob. 4.62PCh. 4 - A cutting tool uses a nozzle that generates a...Ch. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Steam at 500kPa,300C is used to heat cold water at...Ch. 4 - A dual-fluid heat exchanger has 5kg/s water...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - In a co-flowing (same-direction) heat exchanger,...Ch. 4 - An a water counter flowing heat exchanger has one...Ch. 4 - An automotive radiator has glycol at 95°C enter...Ch. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - A de-superheater has a flow of ammonia of 1.5kg/s...Ch. 4 - Prob. 4.85PCh. 4 - A geothermal supply of hot water at 500kPa,150C is...Ch. 4 - Prob. 4.87PCh. 4 - Prob. 4.88PCh. 4 - A flow of 5kg/s water at l00kPa,20C should be...Ch. 4 - A two-stage compressor takes nitrogen ri at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.92PCh. 4 - A modern jet engine has a temperature after...Ch. 4 - Prob. 4.94PCh. 4 - Prob. 4.95PCh. 4 - Prob. 4.96PCh. 4 - An initially empty canister of volume 0.2m3 is...Ch. 4 - Repeat the previous problem but use the line...Ch. 4 - A tank contains 1m3 air at 100kPa,300K . A pipe...Ch. 4 - Prob. 4.100PCh. 4 - A 2.5L tank initially is empty, and we want to...Ch. 4 - An insulated 2m3 tank is to be charged with R-134a...Ch. 4 - Repeat the previous problem if the valve is closed...Ch. 4 - A 3m3 ? cryogenic storage tank contains nitrogen...Ch. 4 - Prob. 4.105PCh. 4 - Prob. 4.106PCh. 4 - Prob. 4.107PCh. 4 - A 1-L can of R-410A is at room temperature, 20°C,...Ch. 4 - Steam at 3MPa,400C enters a turbine with a...Ch. 4 - Prob. 4.110PCh. 4 - Assume a setup similar to that of the previous...Ch. 4 - Prob. 4.112PCh. 4 - Three a flows, all at 200 kPa, e connected to the...Ch. 4 - A 1m3,40kg rigid steel tank contains air at 500...Ch. 4 - Prob. 4.115PCh. 4 - Prob. 4.116PCh. 4 - Prob. 4.117PCh. 4 - Prob. 4.118PCh. 4 - Prob. 4.119PCh. 4 - A flow of 2kg/s of water at 500kPa,20C is heated...Ch. 4 - Refrigerant R-410A at l00psia,60F flows at...Ch. 4 - A pool is to be filled with 2500ft3 water from a...Ch. 4 - Prob. 4.123EPCh. 4 - Liquid water at 60 F flows out of a nozzle...Ch. 4 - Prob. 4.125EPCh. 4 - Prob. 4.126EPCh. 4 - Prob. 4.127EPCh. 4 - Nitrogen gas flows into a convergent nozzle at...Ch. 4 - A meteorite hits the upper atmosphere at 10000ft/s...Ch. 4 - Refrigerant R-410A flows out of a cooler at...Ch. 4 - Prob. 4.131EPCh. 4 - Saturated vapor R-410A at 75 psia is throttled to...Ch. 4 - A wind turbine can exact at most a fraction 16/27...Ch. 4 - A liquid water turbine receives 4Ibm/s water at...Ch. 4 - Prob. 4.135EPCh. 4 - What is the specific work one can get from Hoover...Ch. 4 - A small-speed turbine operating on compressed air...Ch. 4 - R.410A in a commercial refigerator flows into the...Ch. 4 - Prob. 4.139EPCh. 4 - An exhaust fan in a building should be able to...Ch. 4 - Carbon dioxide gas enters a steady-state,...Ch. 4 - Prob. 4.142EPCh. 4 - Prob. 4.143EPCh. 4 - Liquid glycol flows around an engine, cooling t as...Ch. 4 - Prob. 4.145EPCh. 4 - Prob. 4.146EPCh. 4 - Prob. 4.147EPCh. 4 - Do the previous problem if the water is just...Ch. 4 - A dual-fluid heat exchanger has l0Ibm/s water...Ch. 4 - Steam at 80psia,600F is used to heat cold water at...Ch. 4 - Prob. 4.151EPCh. 4 - Two flows of air are both at 30 psia one has...Ch. 4 - A de-superheater has a flow of ammonia of 3Ibm/s...Ch. 4 - Prob. 4.154EPCh. 4 - A two-stage compressor takes nitrogen n at...Ch. 4 - The intercooler in the previous problem uses cold...Ch. 4 - Prob. 4.157EPCh. 4 - Prob. 4.158EPCh. 4 - A tank contains l0ft3 of air at 15psia,540R . A...Ch. 4 - Prob. 4.160EPCh. 4 - Prob. 4.161EPCh. 4 - Prob. 4.162EPCh. 4 - Prob. 4.163EPCh. 4 - Prob. 4.164EP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An incompressible fluid flows through a nozzle at 5 kg/s. What is the final velocity if inlet velocity is 5 m/s, and the area of the exit is half the area of the inlet?arrow_forwardQ4) The nozzles receive steam at 1.75 MPa, 300 °C, and exit pressure of steam is 1.05 MPa. If there are 16 nozzles, find the cross-sectional area of the exit of each nozzle for a total discharge to be 280 kg/min. Assume nozzle efficiency of 90%. If the steam has velocity of 120 m/s at the entry to the nozzles, by how much would the discharge be increased?arrow_forwardThe exit flow angle of stator in an axial steam turbine is 68°. The flow angle of the relative velocity leaving the rotor is-67. Steam leaves the stator at V2= 120m/s, and the axial velocity is Vx=0.41 U At the exit of the rotor blades the axial steam velocity is Vx=0.42 U. The mass flow rate is m=2.2kg/s Find (a) the flow angle entering the stator, assuming it to be the same as the absolute flow angle leaving the rotor: (b) the flow angle of the relative velocity entering the rotor, (c) the reaction force on the rotor, and (d) the power delivered by the stagearrow_forward
- At inlet to a certain nozzle the specific enthalpy of the fluid passing 3500 kJ/kg and the velocity is 70 m/sec. At the discharge the specific enthalpy is 2782 kJ/kg. The the nozzle is Horizontal and there is negligible heat loss from it. (a) find the velocity at exit from the nozzle (b) if the inlet area is 0.1 m^2 and specific volume at inlet is 0.198 m^3/kg, find the mass flow rate (c) if the specific volume at the nozzle exit is 0.598 m^3/kg, find the exit area of the nozzlearrow_forwardA water truck drives slowly around a construction site, spraying water to keep dust down. A pump maintains a constant pressure of 100 kPa, gage, and the water is dispersed through 20 spray nozzles, each of diameter 0.01 m. If the truck is initially filled with 4000 L of water, and the flow rate is constant, determine how long the truck can drive before a refill is necessary in seconds.arrow_forwardProblem 1. Air in a diffuser (diffuser: A device that increases pressure of a fluid by decreasing fluid velocity). Air enters the diffuser at a inlet outlet steady velocity of 200 m/s, T= 10 °C, and P = 80 kPa. The inlet area of the diffuser is 0.4 m². The air leaving the diffuser (outlet) has a very diffuser small velocity compared to the inlet velocity. Find the mass flow rate (kg/s) of the air and the temperature (°C) leaving the diffuser.arrow_forward
- Water from a large reservoir drives a turbine, and exits as a free jet from a pipe of diameter D. The jet is deflected by a vane, and the horizontal force required to hold the vane is F directed to the left. Given: h = 40m, D = 0.15m, 0 = 30°, F, = 1500N, and Pw = 1000 kg/m³. Assume velocity magnitude at exit of vane is equal to that at entrance. If all losses are negligible, calculate: (a) The power developed by the turbine in kW. (b) The pressure difference across the turbine, and express it as a head (m). h Figure 1: Problem 2, A sketch (not-to-scale) Equations used must be labeled appropriately: conservation of mass, principle of linear momentum, principle of angular momentum, or first law of thermodynamics. Control volumes must be drown and clearly defined. List all assumptions.arrow_forwardAt a point A in a pipe line carrying water, the diameter is 1 m, the pressure is 98 KPa and the velocity is 1 m/s. At a point B, 2 m higher than A, the diameter is 0.5 m and the pressure is 20 KPa. The direction of flow would bearrow_forward2. A reciprocating compressor draws in 500 cubic feet per minute of air whose density is 0.079ft/cu. ft and discharges it with a density of 0.304 lb/cu. ft. At the suction, P 1 = 15 Psia; atdischarge, P 2 = 80 psia. The increase in the specific internal energy is 33.8 BTU/lb and the heattransferred from the air by cooling is 13Btu/lb. Determine the work on the air in BTU/min and inhp. Neglect kinetic energy. 3 decimal in final answer plsarrow_forward
- Air enters a nozzle with P1 = 585 kPa, T1 = 195 C, and V1 = 100 m/s. If the air exits to the atmosphere where the pressure is 85 kPa, find exiting velocity, assuming an adiabatic process.arrow_forwardAt the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kJ/Kg. In addition, the velocity is 50 m/s. At the discharge end, the enthalpy is 2600 kJkg. The nozzle is horizontal and there is negligible heat loss from it. a. Find the velocity at the exit of the nozzle? b. If the inlet area is 900 cm and specific vohme at the inlet is 0.187 m'kg, find the mass flowrate? c. If the specific volume at the exit of the nozzle is 0.498 m/kg, find the exit area of nozzle? Fhuid in Fhaid out V2= ? A2= ? V- 50 m/s A- 900 cm? hi- 2800 kJ/kg h2= 2600 kJ/kgarrow_forwardThe velocity of water and pressure at the suction side of a pump is 4m/s and 90kPa respectively. If the velocity of water is 8m/s and the pressure is 140kPa on the discharge side of a pump, what is the head added by the pump?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license