Concept explainers
The current through a 0.8-H inductor is given by
The expression for the voltage across the inductor.
Answer to Problem 4.1HP
The expression for the voltage across the inductor is
Explanation of Solution
Calculation:
The expression for the voltage across the inductor is given by,
Substitute
Conclusion:
Therefore, the expression for the voltage across the inductor is
Want to see more full solutions like this?
Chapter 4 Solutions
Principles and Applications of Electrical Engineering
- Pls show neat and whole solutionarrow_forwardDon't use ai to answer I will report you answerarrow_forwardA three-phase transmission line supplies power to three loads at a voltage 408 Vrms (line to line). The loads are as follows: Load 1: S₁ = 100+ j50 VA Load 2: S₂ = 40-j20 VA Load 3: S3 = 10 + j0 VA Find the magnitude of the line current | Line and the combined power factor of the loads. Hint: Steral \= √3 | Vime |× | Ime | line linearrow_forward
- Can you show why the answer to this question R = 199 ohm?arrow_forward2.5. Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and degrees, for the following normalized radiation intensities: (a) U(9) cos θ cos(20) (b) U(θ)-cos2 θ cos2(26) (c) U(θ) = cos(θ) cos(30) (0 < θ < 900,0 < φ 360) (d) U(t) = cos2(9) cos2(39) (e) U(9) = cos(29) cos(39) (f) U (ecos (20) cos (30)arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA 60 Hz, 230 kV, 275 km long, uncompensated three-phase transmission line consists of three conductors bundled by phase, such that each conductor in the line is of the ACSR Falcon type. The separation between each bundled conductor is d = 45 cm and the separation between each phase of the line is 2.4 m. Calculate: "The parameters R, L, C of the line in Q2/km; µH/m and nF/m. And the total values of ZL and YC in Q and S, respectively, and in polar coordinates." Generalized constants A, B, C and D of the line, according to the type of transmission line. Present the results in rectangular coordinates. If a three-phase wye load draws 3/4 of the nominal current of the 300 MW system with FP = 0.85 lagging and at 230 kV, calculate: (a) Current at the load in KA (b) Voltage at the source in KV, (c) Current at the source in kA and (d) power at the source in MVA. Obtain the results per phase. Transmission line voltage regulation percentagearrow_forwardDetermine the required EMT size for the following combination of conductors:18. Four 8 AWG Type THW and four 12 AWG Type THW:19. Three 350 kcmil and one 250 kcmil Type XHHW conductors and a 4 AWG bare conductor:20. In a nonmetallic-sheathed (Type NM) cable installation, a 10⁄3 with equipmentgrounding conductor is installed in a metal octagonal box to supply two 12⁄2 withequipment grounding conductor branch-circuit cables. What is the minimum sizebox? The box contains internal cable clampsarrow_forward
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning