Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 27QLP
Explain why, in the abscissa of Fig. 4.16c, the percentage of pearlite begins to decrease after 0.8% carbon content is reached.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
in a tabular format compare microstructure,for different cast irons and steel
In casting experiments performed during a certain alloy and
type of sand mould it took 155 second for a cube shaped
casting to solidify. The cube was 50 mm on a side.
(i)
Determine the value of the mould constant in
Chvorinov's Rule.
(ii)
If the same alloy and mould type were used, find the
total solidification time for cylindrical casting in which
the diameter D = 30 mm and length L = 50 mm.
%3D
A clean and dry core rock sample weighing 425 g was 100%saturated with brine solution.The new weight is 453 g. The core sample is 12 cm long and 4 cm in diameter with a porosity of the rock sample is 0.173. Calculate the specific gravity to the brine which is used to measure the porosity
Chapter 4 Solutions
Manufacturing Engineering & Technology
Ch. 4 - Describe the difference between a solute and a...Ch. 4 - What is a solid solution?Ch. 4 - Prob. 3RQCh. 4 - Describe the difference between a single-phase and...Ch. 4 - What is an induction heater? What kind of part...Ch. 4 - Describe the major features of a phase diagram.Ch. 4 - What do the terms equilibrium and constitutional,...Ch. 4 - Prob. 8RQCh. 4 - What is tempering? Why is it performed?Ch. 4 - Explain what is meant by severity of quenching.
Ch. 4 - What are precipitates? Why are they significant in...Ch. 4 - Prob. 12RQCh. 4 - Prob. 13RQCh. 4 - Prob. 14RQCh. 4 - Prob. 15RQCh. 4 - You may have seen some technical literature on...Ch. 4 - Prob. 17QLPCh. 4 - What is the difference between hardness and...Ch. 4 - Prob. 19QLPCh. 4 - Prob. 20QLPCh. 4 - Prob. 21QLPCh. 4 - Describe the characteristics of (a) an alloy, (b)...Ch. 4 - Explain why carbon, among all elements, is so...Ch. 4 - Prob. 24QLPCh. 4 - In Section 4.8.2, several fluids are listed in...Ch. 4 - Why is it important to know the characteristics of...Ch. 4 - Explain why, in the abscissa of Fig. 4.16c, the...Ch. 4 - Prob. 28QLPCh. 4 - Prob. 29QLPCh. 4 - Prob. 30QLPCh. 4 - Design a heat-treating cycle for carbon steel,...Ch. 4 - Using Fig. 4.4, estimate the following quantities...Ch. 4 - Prob. 33QTPCh. 4 - Prob. 34QTPCh. 4 - Prob. 35SDPCh. 4 - Figure 4.18b shows hardness distributions in...Ch. 4 - Throughout this chapter, you have seen specific...Ch. 4 - Refer to Fig. 4.24, and think of a variety of...Ch. 4 - Inspect various parts in your car or home, and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Which one statement is true. Explainarrow_forwardQuestion-6. For solidification of a piece of FCC-metal at 860 °C. The melting point of the metal is 1260 °C. The latent heat of fusion and surface free energy are -2.16 x108 J/m³ and 0.126 J/m², respectively. If nucleation is homogeneous, answer the following questions: (a) Compute the critical radius r* in nm (b) Compute the activation free energy AG* in J (c) If the lattice parameter is 0.26 nm at the melting temperature, compute the number of atoms found in a nucleus of critical size (d) Compute the critical radius at the supercooling degree of 260 K.arrow_forwardQ1/ In a homogeneous solidification process, assume molten metal solidifies into a spherical nucleus with a BCC structure. The given data are; lattice parameter (0.292 nm), the heat of fusion energy (1.85×10-9 J/m³), latent surface free energy (0.204 J/m²), critical radius (1-35 nm), equilibrium melting temperature (1516 K), and room temperature (27 °C). Calculate the following for this metal; (a) supercooling value temperature (b) activation tree energy (c) number of atoms in a nucleus of critical size.arrow_forward
- Schematic room temperature microstuctures for iron-carbon alloys are shown below (in the attached photo) 1) Explain what each microstructure is 2) Rank each alloy from most ductile to least ductile. Justify your answerarrow_forwardA 30% ethylene glycol solution in water is gradually cooled. At what temperature in degree celsius does crystallization begin?arrow_forwardA molten Ag-Cu (20%) alloy is allowed to cool slowly from liquid phase till room temperature. Refer to Figure Ql and plot its cooling curve. Estimate % a just after it has solidified at 779 °C and at room temperature. Sketch its microstructure and find % eutectic.arrow_forward
- (a) A spherical casting of diameter 10 cm has a cylindrical riser 5 cm in diameter and 10 cm high. Predict with suitable explanation whether the riser can prevent macroporosity in the casting based on calculation applied to the riser design.arrow_forwardDescribe in your own words the three strengthening mechanisms discussed in this chapter (i.e., grain size reduction, solid-solution strengthening, and strain hardening). Be sure to explain how dislocations are involved in each of the strengthening techniques.arrow_forwardIs it true that Martensite is tempered because it is too strong? Why or Why notarrow_forward
- Compute the volume percent of graphite VGr in a 3.3 wt% C cast iron, assuming that all the carbon exists as the graphite phase. Assume densities of 7.9 and 2.3 g/cm3 for ferrite and graphite, respectively. a. what is the weight fraction Wa? b. what is the weight fraction of graphite? c.what is the volume fraction of graphite?arrow_forwardChoose the correct grapharrow_forwardCalculate the number of vacancies per cm3 expected in copper at 1080°C (just below the melting temperature). The energy for vacancy formation is 20,000 cal/mol.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Alloy & their Properties | Properties of Matter | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=KgUmNQD6m5Q;License: Standard Youtube License