Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 22Q
Whiplash sometimes results from an automobile accident when the victim’s car is struck violently from the rear. Explain why the head of the victim seems to be thrown backward in this situation. Is it really?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An automobile has a head-on collision. A passenger in the car experiences a compression injury to the brain. Is this injury most likely to be in the front or rear portion of the brain? Explain.
Some people say that the “force of inertia” (or “force of momentum”) throws the passengers forward when a car brakes sharply. What is wrong with this explanation?
Two people, one with mass 50 kg and one with mass 60kg are sitting opposite
each other in rolling chairs and each person puts their feet against the other
person's feet. They then push off horizontally. The lighter person accelerates
(temporarily) backward at 1.2 m/s2. What is the magnitude of the acceleration
that the heavier person experiences?
Chapter 4 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
With the initial appearance of the feature we call Now Solve This, a short introduction is in order. The featur...
Concepts of Genetics (12th Edition)
57. The takeoff speed for an Airbus A320 jetliner is 80 m/s. Velocity data measured during takeoff are as shown...
College Physics: A Strategic Approach (3rd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
98. Silicon has three naturally occurring isotopes: Si-28 with mass 27. 9769 amu and a natural abundance of 92....
Introductory Chemistry (6th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- "A 60-kg person walks on a 100-kg log at the rate of 0.80 m/s (with respect to the log). With what speed does the log move, with respect to the shore?" O 0.24 m/s O 0.30 m/s O 0.48 m/s 0.60 m/sarrow_forwardUsually, we do not walk or even stand on a lightweight boat or raft because of the danger of falling into the water. If you have ever stepped off a small boat onto a dock, however, you have probably noticed that the boat moves away from the dock as you step toward the dock or out of the boat. A heavy dog running on a long lightweight raft presents a similar situation. At first, the raft and the dog are at rest with respect to the water (see figure A below) so that vi = 0. The dog then runs on top of the raft at vd = vd with respect to the water (see figure B below). The dog has half the mass of the raft. Find an expression for the velocity of the raft after the dog began running. (Use the following as necessary: vd.)arrow_forwardUsually, we do not walk or even stand on a lightweight boat or raft because of the danger of falling into the water. If you have ever stepped off a small boat onto a dock, however, you have probably noticed that the boat moves away from the dock as you step toward the dock or out of the boat. A heavy dog running on a long lightweight raft presents a similar situation. At first, the raft and the dog are at rest with respect to the water (see figure A below) so that ✓; = 0. The dog then runs on top of the raft at ✓d = v₁₁ with respect to the water (see figure B below). The dog has one fourth the mass of the raft. Find an expression for the velocity of the raft after the dog began running. (Use the following as necessary: Vd.) V A. √₁ = ? B. V₁ = 0arrow_forward
- Usually, we do not walk or even stand on a lightweight boat or raft because of the danger of falling into the water. If you have ever stepped off a small boat onto a dock, however, you have probably noticed that the boat moves away from the dock as you step toward the dock or out of the boat. A heavy dog running on a long lightweight raft presents a similar situation. At first, the raft and the dog are at rest with respect to the water (see figure A below) so that vi = 0. The dog then runs on top of the raft at vd = vd with respect to the water (see figure B below). The dog has one sixth the mass of the raft. Find an expression for the velocity of the raft after the dog began running. (Use the following as necessary: vd.) vr =arrow_forwardUsually, we do not walk or even stand on a lightweight boat or raft because of the danger of falling into the water. If you have ever stepped off a small boat onto a dock, however, you have probably noticed that the boat moves away from the dock as you step toward the dock or out of the boat. A heavy dog running on a long lightweight raft presents a similar situation. At first, the raft and the dog are at rest with respect to the water (see figure A below) so that vi = 0.The dog then runs on top of the raft at vd = vd with respect to the water (see figure B below). The dog has half the mass of the raft. Find an expression for the velocity of the raft after the dog began running. (Use the following as necessary: vd.) vr =?iarrow_forwardOn the surface of the Earth, a hammer and a feather are dropped from the same height at precisely the same moment. The feather impacts the Earth first because the force of gravity is weaker on the lighter feather. The hammer and feather both impact the ground at the same time. The hammer impacts the ground first because it is heavier than the feather. The feather hits the ground after the hammer because of air resistance.arrow_forward
- Two metal balls are the same size but ball A weighs 20 N and ball B weighs 10 N. Ball B is dropped one second before ball A from the roof of a 100 m tall building to the sidewalk below. If the effects of air can be ignored, then at what point will ball A catch up to ball B.arrow_forwardTwo astronauts, of masses 85 Kg and 120 Kg, are initially at rest in outer space. They push each other apart. What is their total separation after the lighter astronaut has moved 32.75 m?arrow_forwardA car and a large truck traveling at the same speed collide head-on and stick together.Ignoring the effects of friction, which of the following statements must be true? Multiple statements can be true.arrow_forward
- Grains from a hopper falls at a rate of 10 kg/s vertically onto a conveyor belt that is moving horizontally at a constant speed of 2 m/s. (a) What force is needed to keep the conveyor belt moving at the constant velocity?arrow_forwardIf the resultant of all the external forces acting on a system of particles is zero, then from an inertial frame,one can surely say that : A linear momentum of the system does not change in time kinetic energy of the system does not change in time C angular momentum of the system does not change in time potential energy of the system does not change in timearrow_forwardKramer goes bowling and decides to employ the force of gravity to "pick up a spare." He rolls the 6.50 kg bowling ball very slowly so that it comes to rest a center-to-center distance of 0.245 m from the one remaining 2.00 kg bowling pin. Treat both the ball and the pin as point objects, and determine the magnitude of the force of gravity ?⃗ grav between them.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY