Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 2Q
A box rests on the (frictionless) bed of a truck. The truck driver starts the truck and accelerates forward. The box immediately starts to slide toward the rear of the truck bed. Discuss the motion of the box, in terms of Newton’s laws, as seen (a) by Andrea standing on the ground beside the truck, and (b) by Jim who is riding on the truck (Fig. 4-27).
FIGURE 4-27 Question 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4-69). The last climber slips, pulling the second
climber off his feet. The first climber is able to hold them
both. If each climber has a mass of 75 kg, calculate the ten-
sion in each of the two sections of rope between the three
climbers. Ignore friction between the ice and the fallen
climbers.
31.0°
FIGURE 4-69 Problem 83.
14. Figure 5-34 shows three blocks being pushed across a frie-
tionless floor by horizontal force F. What total mass is acceler-
ated to the right by (a) force F, (b) force F, of block 1 on block 2,
and (c) force F of block 2 on block 3? (d) Rank the blocks
according to their accelerations, greatest first. (e) Rank forces
F, F, and F32 according to their magnitude, greatest first.
(Warmup for Problem 40)
10 kg
5 kg
2 kg
3.
The two forces and shown in Fig 4-25a and b (looking down) act on an 18.5-kg object on a frictionless table top. If F1=10.2n and f2= 16.0 n, find the net force on the object and its acceleration for (a) and (b).
Chapter 4 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.5 - A massive truck collides head-on with a small...Ch. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.7 - A 10.0-kg box is dragged on a horizontal...Ch. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - A box rests on the (frictionless) bed of a truck....Ch. 4 - If the acceleration of an object is zero, are no...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - Only one force acts on an object. Can the object...
Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - A stone hangs by a fine thread from the ceiling,...Ch. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Would a spring scale carried to the Moon give...Ch. 4 - You pull a box with a constant force across a...Ch. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - According to Newtons third law. each team in a tug...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A bear sling, Fig. 430, in used in some national...Ch. 4 - (I) What force is needed to accelerate a child on...Ch. 4 - (1) A net force of 265N accelerates a bike and...Ch. 4 - (I) What is the weight of a 68-kg astronaut (a) on...Ch. 4 - (I) How much tension must a rope withstand if it...Ch. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - (II) What average force is required to stop a...Ch. 4 - (II) Estimate the average force exerted by a...Ch. 4 - (II) A 0.140-kg baseball traveling 35.0 m/s...Ch. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) What average force is needed to accelerate a...Ch. 4 - (II) How much tension must a cable withstand if it...Ch. 4 - (II) A 14.0-kg bucket is lowered vertically by a...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - (II) A 75-kg petty thief wants to escape from a...Ch. 4 - (II) An elevator (mass 4850 kg) is to he designed...Ch. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - (II) A person stands on a bathroom scale in a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - (II) A rocket with a mass of 2.75 106 kg exerts a...Ch. 4 - (II) (a) What is the acceleration of two falling...Ch. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) The cable supporting a 2125-kg elevator has a...Ch. 4 - (III) The 100-m dash can be run by the best...Ch. 4 - (III) A person jumps from the roof of a house...Ch. 4 - (I) A box weighing 77.0 N rests on atable. A rope...Ch. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (II) Christian is making a Tyrolean traverse as...Ch. 4 - (II) A window washer pulls herself upward using...Ch. 4 - (II) One 3.2-kg paint bucket is hanging by a...Ch. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - (II) Two snowcats in Antarctica are towing a...Ch. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - (II) The two forces F1 and F2 shown in Fig. 4-40a...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 40PCh. 4 - (II) Uphill escape ramps are sometimes provided to...Ch. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - (II) A block is given an initial speed of 4.5 m/s...Ch. 4 - (II) An object is hanging by a string from your...Ch. 4 - (II) Figure 4-45 shows a block (mass mA) on a...Ch. 4 - (II) (a) If mA = 13.0 kg and mB = 5.0 kg in Fig....Ch. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Suppose two boxes on a frictionless table...Ch. 4 - (III) The two masses shown in Fig, 450 are each...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - (III) A particle of mass m, initially at rest at x...Ch. 4 - (III) A heavy steel cable of length and mass M...Ch. 4 - A person has a reasonable chance of surviving an...Ch. 4 - A 2.0-kg purse is dropped 58 m from the top of the...Ch. 4 - Toms hang glider supports his weight using the six...Ch. 4 - A wet bar of soap (m = 150 g) slides freely down a...Ch. 4 - A cranes trolley at point P in Fig. 4-53 moves for...Ch. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - (a) In Fig. 454, if mA = mB = 1.00 kg and 33.0,...Ch. 4 - The masses mA and mB slide on the smooth...Ch. 4 - A 75.0-kg person stands on a scale in an elevator....Ch. 4 - A city planner is working on the redesign of a...Ch. 4 - If a bicyclist of mass 65 kg (including the...Ch. 4 - A bicyclist can coast down a 5.0 hill at a...Ch. 4 - Francesca dangles her watch from a thin piece of...Ch. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - In the design of a supermarket, there are to be...Ch. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - A 7650-kg helicopter accelerates upward at 0.80...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - An elevator in a tall building is allowed to reach...Ch. 4 - Two rock climbers, Bill and Karen, use safety...Ch. 4 - Three mountain climbers who are roped together in...Ch. 4 - A doomsday asteroid with a mass of 1.0 1010kg is...Ch. 4 - A 450-kg piano is being unloaded from a truck by...Ch. 4 - Consider the system shown in Fig. 462 with mA =...Ch. 4 - A 1.5-kg block rests on top of a 7.5-kg block...Ch. 4 - You are driving home in your 750-kg car at 15 m/s....Ch. 4 - (II) A large crate of mass 1500 kg starts sliding...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which element is a maingroup metal with an even atomic number? a. K b. Ca c. Cr d. Se
Introductory Chemistry (6th Edition)
5.4 Genes E and H are syntenic in an experimental organism with the genotype . Assume
that during each meiosis,...
Genetic Analysis: An Integrated Approach (3rd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Carefully examine the common sedimentary rocks shown In Figure 2.13. Use these photos and the preceding discuss...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box weighing 66.0 N rests on a table. A rope tied to the box runs vertically upward over a pulley and a weight is hung from the other end (Fig. 4-37). Determine the force that the table exerts on the box if the weight hanging on the other side of the pulley weighs (a) 30.0 N, (b) 60.0 N, and (c) 90.0 N.arrow_forwardthe masses of the pulley and cord. FIGURE 4-45 Problems 51, 52, and 53. Mass m rests mg on a smooth horizontal surface, mg hangs vertically. $2. (II) (a) If ma = 13.0 kg and mB = 5.0 kg in Fig., 4–45, determine the acceleration of each block. (b) If initially ma is at rest 1.250 m from the edge of the table, how long does it take to reach the edge of the table if the system is allowed to move freely? (c) If mg = 1.0 kg, how large must ma be if the acceleration of the system is to be kept at 10 g?arrow_forwardA truck is traveling horizontally to the right (Fig. 4–-38). When the truck starts to slow down, the crate on the (frictionless) truck bed starts to slide. In what direction could the net force be on the crate? (a) No direction. The net force is zero. (b) Straight down (because of gravity). (c) Straight up (the normal force). (d) Horizontal and to the right. (e) Horizontal and to the left. FIGURE 4–38 MisConceptual Question 1.arrow_forward
- A 2.0-kg block is on a ramp that makes an angle of 30 degrees with the horizontal. (a) When the applied force is 15N: (i) What is the block’s acceleration? (ii) Does the block move up or down the ramp? b) What force applied upward along and parallel to the ramp, F, would allow the block to move with constant velocity if there is also a frictional force of 5N opposing the motion?arrow_forward4-3:arrow_forwardThe normal force on an extreme skier descending a very steep slope (Fig. 4–42) can be zero if(a) his speed is great enough.(b) he leaves the slope (no longer touches the snow).(c) the slope is greater than 75°.(d) the slope is vertical (90°).arrow_forward
- 4-1:arrow_forwardA box of mass 0.8 kg is placed on an inclined surface that makes an angle 30° above the horizontal, Figure A constant force of 18 N is applied on the box in a direction 10 with the horizontal causing the box to accelerate up the incline. The coefficient of kinetic friction between the block and the plane is 0.25. (a) Calculate the block's acceleration as it moves up the incline. (b) If the block slides down at a constant speed, find the value of force applied. 30arrow_forwardIn which of the following situations is there zero net force on the body? (i) An airplane flying due north at a steady 120 m/s and at a constant altitude; (ii) a car driving straight up a hill with a 3°slope at a constant 90 km/h; (iii) a hawk circling at a constant 20 km/h at a constant height of 15 m above an open field; (iv) a box with slick, frictionless surfaces in the back of a truck as the truck accelerates forward on a level road at 5 m/s².arrow_forward
- 93. Two mountain climbers are working their way up a glacier when one falls into a crevasse (Figure 4-50). The icy slope can be considered frictionless. Suc's weight is pulling Paul up the 45° slope. If Sue's mass is 66 kg and if she falls 2 m in 10 s (starting from rest), find (a) the tension in the rope joining them and Paul Sue 66 kg (b) Рaul's mass. SSM Figure 4-50 Problem 93arrow_forwardA car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive xdirection before coming to rest. (a) What is the car's acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forward[A1] Direction: The following questions are referring to the concept of Newton’s 2nd law and kinematics, answer it to obtain quantitative and qualitative conclusions about it. Round off your final answers in the nearest hundredths if computation is required. An average person can reach a maximum height of about 60 cm when jumping straight up from a crouched position. During the jump itself, the person’s body from the knees up typically rises a distance of around 60 cm. To keep the calculations simple and yet get a reasonable result, assume that the entire body rises this much during the jump. (a) With what initial speed does the person leave the ground to reach a height of 60 cm? (b) Draw a free-body diagram of the person during the jump. (c) In terms of this jumper’s weight w, what force does the ground exert on him or her during the jump?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY