
Concept explainers
Pedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait.
Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families.
Sarah’s maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarah’s family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members.
Adam’s paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousin’s parents must have been heterozygous carriers of the mutant allele. If that is the case, Adam’s father could be a carrier as well. If Adam’s father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD.
A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation.
If Sarah carries the mutant cancer allele and Adam carries the mutant heart disease allele, what is the chance that they would have a child who is free of both diseases? Are these good odds?

To explain: The chances of having a healthy child if the mother has mutant cancer allele and the father has mutant heart disease allele.
Introduction: A young couple Mr. A and Ms. S belong to Eastern European Jewish ancestry. They went to a genetic counselor for taking advice regarding family planning. The genetic counselor needs to construct a pedigree chart to discover the kind of traits present in their family. It was found that Ms. S had mutant cancer allele and Me. A had mutant heart disease allele. Both these conditions were inherited in an autosomal dominant manner.
Explanation of Solution
Ms. S had a mutant allele for ovarian cancer and Mr. A had hypercholesterolemia allele. Both the alleles would be inherited in the autosomal dominant pattern. In autosomal dominant trait, only one gene is enough for the diseased condition. In the case of Ms. S and Mr. A, both have one normal allele and one mutant allele. So, there are 25% chances that both parents transmit only normal allele to their progeny. Thus, the chances of having a disease-free child are 25%.

To explain: Whether Mr. A and Ms. S are good odds or not.
Explanation of Solution
Ms. S carries the mutant allele for ovarian cancer and Mr. A carries the mutant allele for hypercholesterolemia. Both of these alleles are inherited in an autosomal dominant manner. 25% of their children would be affected by cancer, 25% would be affected by hypercholesterolemia, and 25% would be affected by both the diseases. Only the rest 25% would be unaffected. Thus, Mr. A and Ms. S are not good odds.
Want to see more full solutions like this?
Chapter 4 Solutions
Human Heredity: Principles and Issues (MindTap Course List)
- Q8. A researcher wants to study the effectiveness of a pill intended to reduce stomach heartburn in pregnant women. The researcher chooses randomly 400 women to participate in this experiment for 9 months of their pregnancy period. They all need to have the same diet. The researcher designs two groups of 200 participants: One group take the real medication intended to reduce heartburn, while the other group take placebo medication. In this study what are: Independent variable: Dependent variable: Control variable: Experimental group: " Control group: If the participants do not know who is consuming the real pills and who is consuming the sugar pills. This study is It happens that 40% of the participants do not find the treatment helpful and drop out after 6 months. The researcher throws out the data from subjects that drop out. What type of bias is there in this study? If the company who makes the medication funds this research, what type of bias might exist in this research work?arrow_forwardHow do I determine the inhertiance pattern from the pedigree diagram?arrow_forwardits an open book assignemntarrow_forward
- Describe two different gene regulation mechanisms involving methylationarrow_forwardWhat is behavioral adaptarrow_forward22. Which of the following mutant proteins is expected to have a dominant negative effect when over- expressed in normal cells? a. mutant PI3-kinase that lacks the SH2 domain but retains the kinase function b. mutant Grb2 protein that cannot bind to RTK c. mutant RTK that lacks the extracellular domain d. mutant PDK that has the PH domain but lost the kinase function e. all of the abovearrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Biology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College




