Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 86PQ
(a)
To determine
The plot of superposition of the coherent three waves.
(b)
To determine
The plot of superposition of the incoherent three waves.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 4
a. Write your understanding about coherent waves. A taut string for which u = 5.00 x 102 kg/m is
under a tension of 80.0 N. How much power must be supplied to the string to generate sinusoidal
waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm?
b. The equation of a plane sound wave is, y(x, t) = 6.0 x 10-6 sin(5.7x – 1500t). Find the
frequency, the wavelength and the velocity of the wave. Compare the wavelength with the
amplitude of the oscillations and the wave velocity with the amplitude of the velocity of the
ocillations. What is the phase shift between the oscillations of two points 30.0 cm apart in the
direction of the sound wave?
What are the three longest wavelengths for standing sound waves in a 107-cm-long tube under the
following conditions.
Part A
The tube is open at both ends.
Express your answer in meters and separated by commas.
► View Available Hint(s)
ΠΗΓΙ ΑΣΦ
A₁, A₂, A3 =
Submit
Part B
The tube is open at one end, closed at the other?
Express your answer in meters and separated by commas.
► View Available Hint(s)
A₁, A₂, A3 =
Submit
IVE ΑΣΦ
5
m
m
D(x,t) =1.6cm sin{1.2cm(x+6.8cm/s)}
Find
a.wavelength
B.in which direction is the wave travelling?
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider two waves y1(x,t) and y2(x,t) that are identical except for a phase shift propagating in the same medium. (a)What is the phase shift, in radians, if the amplitude of the resulting wave is 1.75 times the amplitude of the individual waves? (b) What is the phase shift in degrees? (c) What is the phase shift as a percentage of the individual wavelength?arrow_forwardTwo identical point sources are 5.0 cm apart, in phase, and vibrating at a frequency of 12 Hz. They produce an interference pattern. A point on the first nodal line is 5 cm from one source and 5.5 cm from the other. a. Determine the wavelength. b. Determine the speed of the waves.arrow_forwardTI What are the three longest wavelengths for standing sound waves in a 100-cm-long tube under the following conditions. The tube is open at both ends. Express your answer in meters and separated by commas. View Available Hint(s) |IVE ΑΣΦ A2.00, 1.00,6.66 You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Part B Previous Answers ? The tube is open at one end closed at the other? marrow_forward
- Some water waves with density p are experiencing a surface tension T so that the Tk 3 dispersion relation is defined by k is the wave number. The phase velocity of these water waves is: а. Tk 2 phase O b. Tk =3, phase O c. С. Tk phase O d. Tk phase 3arrow_forwardUPVOTE WILL BE GIVEN! PLEASE WRITE THE SOLUTIONS COMPLETELY AND LEGIBLY. PLEASE ANSWER #2 1. Calculate the sabins of absorption at 1000 Hz in a room that has dimensions of 11.00m wide x 15.00m long x 3.50m high. The room has: a. Plasterboard (12mm(1/2") in suspended ceiling grid b. Walls are constructed of concrete blocks (coarse). c. The floor is covered with marble. 2. The absorption coefficients of the materials at 1000Hz are as follows: a. Plasterboard (12mm(1/2") in suspended ceiling grid – 0.04 b. Concrete blocks (coarse) - 0.29 c. Marble flooring -0.01 3. Compute the reverberation time (RT60) of the room. 4. Is the reverberation time appropriate for a room designed for speech? 5. As a designer, what will you recommend 5 to increase (or decrease) the reverberation time?arrow_forwardTwo progressive waves yı = A sin( 4 x wt) and y2 = A sin( 2"x – ot – 5 ) travel in the same direction. X. X - Calculate the amplitude Afot of the wave y = y1 + y2 produced as a result of interference of these two waves. Take A = 7.1 cm, å = 4 m and w = :10z Hz. Give your answer in centimetres (cm).arrow_forward
- Questions 1-6: Consider a wave on a string that can be described by the following equation: y (x, t) = 2.5 cm Sin(2.0 m-1x + 1800 s-1- 4.7) %3D 1. This is describes a... [circle one] ( sanding wave / wave traveling toward +x/wave traveling towards -x) 2. Amplitude = 3. Wavelength = 4. Frequency = 5. Wave speed% = 6. Speed of the medium att = 2.0 ms = X-0.25marrow_forwardWrite down w*w, for the following wave functions: a. W(x) = ekx b. W(x) = eAx с. Ф(x) %3D а + іx d. W(x) = cos(2TX)arrow_forwardPlease find D and E only. Thanksarrow_forward
- P1arrow_forwardQuestion 4 a. Write your understanding about coherent waves. A steel wire in a piano has a length of L = 0.9m and a mass of m = 5.4 g. To what tension T must this wire be stretched so that its fundamental vibration possess a frequency f= 261.6 Hz? b. The equation of a plane sound wave is, y(x,t) = 6.0 × 10-6 sin(5.7x – 1500t). Find the frequency, the wavelength and the velocity of the wave. Compare the wavelength with the amplitude of the oscillations and the wave velocity with the amplitude of the velocity of the oscillations. What is the phase shift between the oscillations of two points 30.0 cm apart in the direction of the sound wave?arrow_forwardTwo compact sources of sound near each other produce in-phase sine waves at each source. One source is positioned at a distance x, =12.00 m from a microphone 2. and the other source is positioned at a distance of x, =13.40 m from the same microphone. The amplitude of the sound at the microphone from each source by itself is s = 0.0350 um. The plane waves come from essentially the same direction so there will be interference. b. When both sources are on, interference changes the total amplitude to s, = 2s, cos(dS/ 2). What is the total amplitude for the phase difference found in part 'a.'?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University