Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 13PQ
(a)
To determine
The linear distance on the screen between the central maximum and the
(b)
To determine
The linear distance on the screen between the central maximum and the
(c)
To determine
Whether the maxima are evenly spaced.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4
A hunter at distance of 0.16 km aims to shoot two squirrels sitting 10 cm apart on the same branch of a
tree. He claims he can do this without the help of a telescope sight on his rifle. The wavelength of light
in a vacuum is 498 nm. Determine the diameter of the pupils of his eyes that would be required to
resolve the squirrels as separate objects.
O A.2.22 x 10-4 m
B.5.32 x 10-4 m
OC.6.81 x 10-4 m
O D.9.54 x 10-4 m
1. a. If a piece of glass (n = 1.5) is coated with a transparent plastic (n = 2.0), will there be a
phase shift in either of the beams reflecting off the interfaces (air/plastic and plastic/glass)? How
can you tell, without doing the experiment, whether or not there will be a phase shift in either
beam? Be specific about what rays are reflecting off what materials.
b. So what thickness or thicknesses give the maximum reflection? What thickness or thicknesses
(hint: it's thicknesses) give the minimum reflection? Assume that a light of wavelength 500. nm
is used, and you may leave the answer in nm. Yes, this is a choice between equations 35.17 and
35.18, but your answer to part a should be helpful in deciding which set.
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- X-rays incident on a crystal with planes of atoms located 0.378 nm apart produce a diffraction pattern in which a first-order maximum is observed at an angle of 14.2. a. What is the wavelength of the X-rays incident on the crystal? b. How many orders are visible in the diffraction pattern?arrow_forwardRadio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forwardA hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forward
- A laser beam with wavelength λ = 675 nm hits a grating with n = 4750 grooves per centimeter. A. Calculate the grating spacing, d, in centimeters. B. Find the sin of the angle, θ2, at which the 2nd order maximum will be observed, in terms of d and λ. C. Calculate the numerical value of θ2 in degrees.arrow_forwardIf the width of the slit is increased in a single slit diffraction experiment, the light intensity pattern becomes laser will be Given a constant slit width, the light intensity pattern from a 700 nm than the pattern from a 400 nm laser. Select one: SMIV IMIIW b. narrower, wider c. wider, narrower d. narrower, narrower e. wider, widerarrow_forwardLaser light with wavelength of 500 nm is incident on two slits of width 1.0 µm and the slits are 8.0 µm apart. a) Determine how many bright fringes are within the central maximum of the diffraction pattern. b) Determine how many bright fringes are within the first side peak of the diffraction pattern. c) Draw the diffraction pattern.arrow_forward
- Problem 2. A) A Michelson interferometer uses light of wavelength 500 nm. The irradiance of the beam exiting the laser is IL. What are the possible differences in the lengths of the arms of the interferometer when the irradiance at the detector is IL/3? B) Young's Double slit experiment is performed with HeNe laser wavelength 632.8 nm. The screen is 2 m from the slits and the slit separation is 0.2 mm. Find the distance of the 3th bright fringe from the center of the interference pattern on the screen (call the central bright fringe the "Oth" fringe).arrow_forwardA thin film of polystyrene n=1.49 coats a piece of glass n=1.55. When illuminated from above, the dominant color of the light reflected to the observer is 473 nanometers wich is blue. What is the minimum thickness of the thin film? A. 317 nm B. 153 nm C. 159 nm D. 305 nm E. 79.4 nmarrow_forward1. O -12 points SerPSE9 38.P.001.MI.FB. My Notes O Ask Your Teacher Light of wavelength 588.0 nm illuminates a slit of width 0.80 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.89 mm from the central maximum? m (b) Calculate the width of the central maximum. mm Need Help? Read It Master It 2. O -11 points SerPSE9 38.P.005. My Notes + Ask Your Teacher Coherent microwaves of wavelength 5.00 cm enter a tall, narrow window in a building otherwise essentially opaque to the microwaves. If the window is 45.0 cm wide, what is the distance from the central maximum to the first-order minimum along a wall 6.50 m from the window? cm Need Help? Read It 3. -/1 points SerPSE9 38.P.007.MI.FB. My Notes Ask Your Teacher A screen is placed 60.0 cm from a single slit, which is illuminated with light of wavelength 690 nm. If the distance between the first and third minima in the diffraction pattern is 3.10 mm, what is the width of…arrow_forward
- A physician wants to shine a therapeutic Nd YAG laser through a small slit onto a patient who is 37 cm behind the slit. What maximum size slit could she use so that there would be no intensity minima in the light that falls on the patient? The infrared wavelength of the YAG laser is 1064 nm. PLEASE PLEASE draw the diagram/situation and define variables THank you!!arrow_forwardA. Find the angle (in degrees) of the second diffraction minimum for 750 nm light falling on a slit of width 28.0 µm. B.What slit width (in µm) would place this minimum at 80.0°?arrow_forwardNarrow, equally spaced vertical slits with equal widths are located at a distance of D = 2.47 m from a screen. The intensity pattern in the figure is observed when light with wavelength = 570 nm from a laser passes through the slits, illuminating them uniformly. The screen is perpendicular to the laser beam. 0 1 2 3 4 5 6 7 8 9 cm 7 The number of slits is ... Submit Answer Incorrect. Tries 1/3 Previous Tries Calculate the center to center spacing between the slits. Use the cm scale to measure distances on the screen. 2.25x10^-6 cm There is a fixed relation between wavelength, slit separation, and angle between the first (or second, third etc) order maximum and the central maximum. The angle can be determined from the distance to the screen and the separation between the first maximum and the central maximum on the screen. Submit Answer Incorrect. Tries 1/12 Previous Tries Calculate the width of the slits. Use the cm scale to measure distances on the screen. Submit Answer Tries 0/12arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY