Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 34PQ
To determine
The angle corresponding to the first minimum in the diffraction pattern.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a single-slit diffraction experiment, there is a minimum of intensity for orange light (l= 600 nm) and a minimum of intensity for blue-green light (l = 500 nm) at the same angle of 1.00 mrad. For what minimum slit width is this possible?
Light of wavelength 520 nm illuminates a slit of width 0.45 mm.
(a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.52 mm from the central maximum?
0.45 m
0.53 m
0.63 m
0.72 m
(b) Calculate the width of the central maximum.
1.04 mm
2.08 mm
3.12 mm
4.16 mm
A single slit that is 2100 nm wide forms a diffraction pattern when illuminated by
monochromatic light of 680-nm wavelength. At an angle of 10° from the central
maximum, what is the ratio of the intensity to the intensity of the central
maximum?
1/10=0.35
1/10=0.39
1/10=0.43
1/10= 0.47
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardBoth sides of a uniform film that has index of refraction n and thickness d are in contact with air. For normal incidence of light, an intensity minimum is observed in the reflected light at λ2 and an intensity maximum is observed at λ1, where λ1 > λ2. (a) Assuming no intensity minima are observed between λ1 and λ2, find an expression for the integer m in Equations 27.13 and 27.14 in terms of the wavelengths λ1 and λ2. (b) Assuming n = 1.40, λ1 = 500 nm, and λ2 = 370 nm, determine the best estimate for the thickness of the film.arrow_forwardIn a single-slit diffraction experiment, the width of the slit is 1.90 µm. If a beam of light of wavelength 610 nm forms a diffraction pattern, what is the angle associated with the first minimum above the central bright fringe? O 18.7° O 9.35° 39.9° O 11.4°arrow_forward
- A double-slit arrangement produces interference fringes for sodium light (l =589 nm) that have an angular separation of 3.50* 10-3 rad. For what wavelength would the angular separation be 10.0% greater?arrow_forwardThe intensity of the single-slit diffraction pattern at any angle 0 is given by 1 (0) = 1m (sing)². For light of wavelength 480 nm falling on a slit of width 3.5 µm, what is the value of a when 8 = 18°? 7.1 rad 0.31 rad 7.3 rad 2.3 rad 9.8 radarrow_forwardA diffraction Grating has 1.26 × 10* rulings uniformly spaced over a width of 25.5 mm. It is illuminated at normal incidence by yellow light from a sodium vapor lamp. The light contains two very closely spaced emission lines (known as the sodium doublet) of wavelengths 589.00 nm and 589.59 nm. (a) At what angle the first order maximum occur (on either side of the central diffraction pattern) for the wavelength 589.00 nm? ( dsine = m2 ) de - a0 da (b) Use the dispersion of the grating D calculate the angular separation between the two lines (sodium doublets) in the first order. (c) The diffraction pattern is observed on a screen 4.0 m behind the Grating. What is the linear separation of the two first order diffracted lines on the screen?arrow_forward
- Hurry!!!arrow_forwardTwo narrow slits are spaced 1.40μm apart and are placed 35.0 cm from a screen. What is the distance between the first and second dark lines of the interference pattern when the slits are illuminated with coherent light with λ = 450nm?arrow_forwardA light source emits visible light of two wavelenghts lambda1 = 430nm and lambda2 = 510nmarrow_forward
- A diffraction grating has 1570 lines/cm. What is the highest order m that contains the entire visible spectrum from 400 nm to 700 nm? (a) m = 4 (b) m = 9 (c) m = 3 (d) m = 2 (e) m = 5arrow_forwardMonochromatic light with wavelength 620 nm passes through a circular aperture with diameter 7.4 µm. The resulting diffraction pattern is observed on a screen that is 4.5 m from the aperture. What is the diameter of the Airy disk on the screen?arrow_forwardLight of wavelength 514 nm illuminates a slit of width 0.75 mm. At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.87 mm from the central maximum? 2.48 m 1.47 m 2.10 m 1.83 m nonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY