Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 72PQ
To determine
The effect of the pillar on the hearing of the sound wave by the person.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the speaker set-up in the previous question. Each speaker emits a frequency of 6.6·102 Hz in phase with the other. The listener is seated directly in front of one speaker, 1.6 m away. The speakers are 2.4 m away from each other. How many extra wavelengths are needed for sound to get from speaker 2 to the listener? Take the speed of sound in air to be 3.4·102 m/s.
Two in-phase loudspeakers are placed 6.00 m apart along one wall of a room. They emit sound with a frequency of 512Hz. Starting at the location of one of the loudspeakers, a microphone is moved in a direction perpendicular to the wall until constructive interference is detected for the first time. How far is the microphone from the wall at that point? The speed of sound in air is 330 m/s.
a) 0.203 m
b) 0.282 m
c) 0.664 m
d) 0.138 m
0.141 m
For testing purposes, a musical instrument manufacturing company creates a device so that when you blow into one end with your instrument, sound comes out the other end in opposite directions. A sound technician uses a whistle and generates sound
waves with a frequency of 200 Hz. The waves travel in opposite directions in a sound studio, are reflected by end walls, and return. The studio is 50.0 m long and the whistle is located 14.0 m from one end. What is the phase difference (in degrees)
between the reflected waves when they meet at the source of the sound? The speed of sound in air is 343 m/s.
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A riverside warehouse has several small doors facing the river. Two of these doors are open as shown in Figure P27.17. The walls of the warehouse are lined with sound-absorbing material. Two people stand at a distance L = 150 in from the wall with the open doors. Person A stands along a line passing through the midpoint between the open doors, and person B stands a distance y = 20 m to his side. A boat o the river sounds its horn. To person A, the sound is loud and clear. To person B, the sound is barely audible. The principal wavelength of the sound waves is 5.00 m. Assuming person B is at the position of the first minimum, determine the distance d between the doors, center to center.arrow_forwardDuring a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forwardA room is 6.0 m long and 3.0 m wide. At the front of the room, along one of the 3.0-m-wide walls, two loudspeakers are set 1.0 m apart, with the center point between them coinciding with the center point of the wall. The speakers emit a sound wave of a single frequency and a maximum in sound intensity is heard at the center of the back wall, 6.0 m from the speakers. What is the highest possible frequency of the sound from the speakers if no other maxima are heard anywhere along the back wall?arrow_forward
- Submarine A travels horizontally at 11.0 m/s through ocean water. It emits a sonar signal of frequency f = 5.27 103 Hz in the forward direction. Submarine B is in front of submarine A and traveling at 3.00 m/s relative to the water in the same direction as submarine A. A crewman in submarine B uses his equipment to detect the sound waves (pings) from submarine A. We wish to determine what is heard by the crewman in submarine B. (a) An observer on which submarine detects a frequency f as described by Equation 16.46? (b) In Equation 16.46, should the sign of vs be positive or negative? (c) In Equation 16.46, should the sign of vo be positive or negative? (d) In Equation 16.46, what speed of sound should be used? (e) Find the frequency of the sound detected by the crewman on submarine B.arrow_forwardJenna is standing in the middle of two identical loudspeakers that are 4 m apart and face each other. The speakers are driven in phase by the same oscillator at a frequency of 889 Hz. The speed of sound in the room is 344 m/s. Find the shortest distance in centimeters Jenna can walk toward either speaker in order to hear a minimum of sound. Please give your answers with 1 decimal place.arrow_forwardFor testing purposes, a musical instrument manufacturing company creates a device so that when you blow into one end with your instrument, sound comes out the other end in opposite directions. A sound technician uses a whistle and generates sound waves with a frequency of 280 Hz. The waves travel in opposite directions in a sound studio, are reflected by end walls, and return. The studio is 43.0 m long and the whistle is located 14.0 m from one end. What is the phase difference (in degrees) between the reflected waves when they meet at the source of the sound? The speed of sound in air is 343 m/s. 17044.898X See if you can determine the path difference and the wavelength, and then express the path difference in terms of the wavelength. What part of the path difference is of interest to us when finding the phase difference? How is this part of the path difference related to the phase difference? • Need Help? Read Itarrow_forward
- Two speakers sit 4.0m apart. Each is playing the same pure tone, of a single frequency sinusoidal sound wave. For simplicity, we can place these on the y-axis at y = +2.0m and at y = -2.0m. You stand on the centerline between the speakers, and 10.0m in front of them (this would be at y = 0m, x = 10.0m) At this location, you hear maximum intensity sound, a.k.a. constructive interference. You then walk in the +y direction until you hear a minimum intensity of sound, a.k.a. destructive interference. This happens when you reach y = 2.5m. (Your coordinates would now be x = 10.0, y = 2.5.) Interference is based on path length differences form different sources to the same detection point. Identify the paths from the two different speakers to the first observation point (10,0). How long is each of these paths?arrow_forwardThe ability to hear a "pin drop" is the sign of sensitive hearing. Suppose a 0.50 g pin is dropped from a height of 27 cm, and that the pin emits sound for 1.4 s when it lands. Assuming all of the mechanical energy of the pin is converted to sound energy, and that the sound radiates uniformly in all directions. Find the maximum distance from which a person can hear the pin drop. (This is the ideal maximum distance, but atmospheric absorption and other factors will make the actual maximum distance considerably smaller.)arrow_forward7. When a student tried to set up a home theater system,he arranged two speakers A and B on a wall at a distance 0.845m between them. Now he tried to fix a microphone on the same wall in line with the speakers. The microphone is placed 2.55m from the center points of the two speakers. What is the lowest frequencies of the speakers which will be experienced maximum at the microphone.arrow_forward
- A pair of in-phase stereo speakers is placed side by side, 0.704 m apart. You stand directly in front of one of the speakers, 2.34 m from the speaker. What is the lowest frequency that will produce constructive interference at your location?arrow_forwardThis is possibly a different atmosphere from ours. In any case, the speed of sound is computer-generated, and is 454 m/s this time. Light travels for us instantaneously. You see a lightning flash, and 7.6 seconds later, you hear the thunderbolt. How far away was the lightning (in meters)?arrow_forwardMr. Daryl is giving an announcement, and he can be heard up to 30m. If you are standing 35m east and 25m south of Mr. Daryl, will you be able to hear his announcement? a. Yes, because I am only about 18.02 meters away from him. b. No, because I am about 43.01 meters away from him. C. Yes, because I am only about 25 meters away from him. d. No, because I am about 35 meters away from him.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY