Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 90PQ
(a)
To determine
The ratio of the width of the bright fringes to the width of the dark fringes.
(b)
To determine
The graph of the intensity of the interference pattern.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the distance between any two bright fringes, in mm?
B. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the distance between any two dark fringes, in mm?
C. The light intensity vs. position graph of a double-slit experiment is shown below. The graph was made with helium–neon laser light of wavelength 640 nm shined through two very narrow slits separated by a small distance. The slits were 2.0 meters away from the probe. What is the spacing between the two slits, in mm?
In a double slit experiment, the intensity of light at the center of the central
bright fringe is measured to be 6.2 µW/m². What is the intensity halfway between the
center of this fringe and the first dark band, assuming that the small-angle approximation
9.
is valid?
A. 0.12 µW/m²
B. 1.6 μW/m2
C. 3.1 μW/m2
D. 4.7 µW/m²
E. 6.2 μWΝ/m2
One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. The patch of light seems to be a circular diffraction pattern with a central maximum width of about 1 cm across. The distance from the window shade to the wall is 3 m. a. Estimate the average wavelength of the sunlight b. Estimate the diameter of the pinhole
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 35.1 - Perhaps Newton never observed a diffraction...Ch. 35.1 - Prob. 35.2CECh. 35.2 - Prob. 35.3CECh. 35.3 - Prob. 35.4CECh. 35.4 - When we studied Youngs double-slit experiment, we...Ch. 35.6 - Prob. 35.6CECh. 35 - Light Is a Wave C As shown in Figure P35.1, spray...Ch. 35 - Sound Wave Interference Revisited Draw two...Ch. 35 - Prob. 3PQCh. 35 - You are seated on a couch equidistant between two...
Ch. 35 - Prob. 5PQCh. 35 - Prob. 6PQCh. 35 - A student shines a red laser pointer with a...Ch. 35 - Monochromatic light is incident on a pair of slits...Ch. 35 - Prob. 9PQCh. 35 - In a Youngs double-slit experiment with microwaves...Ch. 35 - A beam from a helium-neon laser with wavelength...Ch. 35 - Prob. 12PQCh. 35 - Prob. 13PQCh. 35 - Prob. 14PQCh. 35 - Light from a sodium vapor lamp ( = 589 nm) forms...Ch. 35 - Prob. 16PQCh. 35 - Prob. 17PQCh. 35 - Prob. 18PQCh. 35 - Prob. 19PQCh. 35 - Prob. 20PQCh. 35 - Prob. 21PQCh. 35 - Prob. 22PQCh. 35 - Prob. 23PQCh. 35 - Figure P35.24 shows the diffraction patterns...Ch. 35 - Prob. 25PQCh. 35 - Prob. 26PQCh. 35 - A thread must have a uniform thickness of 0.525...Ch. 35 - Prob. 28PQCh. 35 - Prob. 29PQCh. 35 - A radio wave of wavelength 21.5 cm passes through...Ch. 35 - Prob. 31PQCh. 35 - Prob. 32PQCh. 35 - A single slit is illuminated by light consisting...Ch. 35 - Prob. 34PQCh. 35 - Prob. 35PQCh. 35 - Prob. 36PQCh. 35 - Prob. 37PQCh. 35 - Prob. 38PQCh. 35 - Prob. 39PQCh. 35 - Prob. 40PQCh. 35 - Prob. 41PQCh. 35 - Prob. 42PQCh. 35 - Prob. 43PQCh. 35 - Prob. 44PQCh. 35 - Prob. 45PQCh. 35 - Prob. 46PQCh. 35 - Prob. 47PQCh. 35 - Prob. 48PQCh. 35 - Figure P35.49 shows the intensity of the...Ch. 35 - Prob. 50PQCh. 35 - Prob. 51PQCh. 35 - Prob. 52PQCh. 35 - Light of wavelength 750.0 nm passes through a...Ch. 35 - Prob. 54PQCh. 35 - Prob. 55PQCh. 35 - Prob. 56PQCh. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - Light of wavelength 515 nm is incident on two...Ch. 35 - A Two slits are separated by distance d and each...Ch. 35 - Prob. 60PQCh. 35 - Prob. 61PQCh. 35 - If you spray paint through two slits, what pattern...Ch. 35 - Prob. 63PQCh. 35 - Prob. 64PQCh. 35 - Prob. 65PQCh. 35 - Prob. 66PQCh. 35 - Prob. 67PQCh. 35 - Prob. 68PQCh. 35 - Prob. 69PQCh. 35 - Prob. 70PQCh. 35 - Prob. 71PQCh. 35 - Prob. 72PQCh. 35 - Prob. 73PQCh. 35 - Prob. 74PQCh. 35 - Prob. 75PQCh. 35 - Prob. 76PQCh. 35 - Prob. 77PQCh. 35 - Another way to construct a double-slit experiment...Ch. 35 - Prob. 79PQCh. 35 - Prob. 80PQCh. 35 - Table P35.80 presents data gathered by students...Ch. 35 - Prob. 82PQCh. 35 - Prob. 83PQCh. 35 - Prob. 84PQCh. 35 - Prob. 85PQCh. 35 - Prob. 86PQCh. 35 - Prob. 87PQCh. 35 - Prob. 88PQCh. 35 - A One of the slits in a Youngs double-slit...Ch. 35 - Prob. 90PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d=2.0103 mm? (b) 50 slits with the same separation? Assume that =600 nm.arrow_forwardA Two slits are separated by distance d and each has width w. If d = 2w, how many bright fringes are within the central maximum of the diffraction pattern?arrow_forwardMonochromatic light of wavelength 530 nm passes through a horizontal single slit of width 1.5 m in an opaque plate. A screen of dimensions 2.0m2.0m is 1.2 m away from the slit. (a) Which way is the diffraction pattern spread out on the screen? (b) What are the angles of the minima with respect to the center? (c) What are the angles of the maxima? (d) How wide is the central bright fringe on the screen? (e) How wide is the next bright fringe on the screen?arrow_forward
- The width of the central peak in a single-slit diffraction pattern is 5.0 mm. The wavelength of the light is 600 nm, and the screen is 2.0 m from the slit. (a) What is the width of the slit? (b) Determine the ratio of the intensity at 4.5 mm from the center of the pattern to the intensity at the center.arrow_forwardAn intensity minimum is found for 450 nm light transmitted through a transparent film (n=1.20) in air. (a) What is minimum thickness of the film? (b) If this wavelength is the longest for which the intensity minimum occurs, what are the next three lower values of ? for which this happens?arrow_forward(a) What is the minimum angular spread of a 633-nm wavelength He-Ne laser beam that is originally 1.00 mm in diameter? (b) If this laser is aimed at a mountain cliff 15.0 km away, how big will the illuminated spot be? (c) How big a spot would be illuminated on the Moon, neglecting atmospheric effects? (This might be done to hit a corner reflector to measure the round-trip time and, hence, distance.) Explicitly show how you follow the steps in Problem-Solving Strategies for Wave Optics.arrow_forward
- 4arrow_forwardThe table contains data obtained during the single-slit microwave experiment with a slit width of 7 cm and a wavelength of 2.8 cm. To compare data like this with theory in Sec. 8.5, you will have to normalize both the intensity and the angular data. A. What is the normalized intensity I/I0 at 40∘? B. What is the normalized angle β/π at 25∘?arrow_forwardTwo slits of width 1.5 μm, each in an opaque material, are separated by a center-to-center distance of 3 μm. A monochromatic light of wavelength 510 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. Hint a. How many peaks of the interference will be observed in the central maximum of the diffraction pattern? There are peaks in the central maximum. b. How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? There are peaks in the central maximum now. c. How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 6 μm, while keeping the widths of the slits same? There are peaks in the central maximum now. d. What will happen in (a) if instead of 510-nm light another light of wavelength 510 nm is used? O In addition to other changes, the number of peaks of interference in the central maximum decreases. O The…arrow_forward
- A flat screen is located 0.67 m away from a single slit. Light with a wavelength of 510 nm (in vacuum) shines through the slit and produces a diffraction pattern. The width of the central bright fringe on the screen is 0.051 m. What is the width of the slit? Number i Unitsarrow_forwardA laser beam (λ=513 nm) is put through a beam splitter to give 2 equal intensity beams traveling parallel to one another. One of these beams is directed through a double slit apparatus, and the other beam through a single slit apparatus. The single slit and the double slits are in the same plane and both display fringe patterns on a screen a distance L= 4.4 m away. a. The slit spacing of the double slit apparatus is 0.52 mm. What is the distance from the center of the double slit fringe pattern to the 5th dark fringe? b. If the third dark fringe of the single slit pattern is the same distance from the center of the single slit pattern as the result for part (a), what is the single slit width? To continue, please enter the result of part b) in mm. Round your answer to 2 decimal places.arrow_forwarda. Light with a wavelength of 550 nm is incident upon a double slit with a separation of 0.3 mm (3×10–4 m). A screen is located 1.5 m from the double slit. At what distance from the center of the screen will the first bright fringe beyond the center fringe appear? The first bright fringe will appear __ cm beyond the center fringe.b b. Light with a wavelength of 510 nm is incident upon a double slit with a separation of 0.3 mm (0.3×10–3 m). A screen is located 1.5 m from the double slit. At what distance from the center of the screen will the fourth dark fringe appear? The fourth dark fringe will appear at a distance of __mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY