Concept explainers
(a)
The angles corresponding to the locations of the first three orders of fringes away from the central bright fringe.
(a)
Answer to Problem 76PQ
The angle made by the first bright fringe is
Explanation of Solution
Write the expression for the path difference for bright fringes in Young’s double slit experiment.
Here,
Rearrange the above equation.
Write the expression for the angle made by the first bright fringe from the above equation.
Write the expression for the angle made by the second bright fringe from the equation (II).
Write the expression for the angle made by the third bright fringe from the equation (II).
Conclusion:
Substitute
Substitute
Substitute
Therefore, the angle made by the first bright fringe is
(b)
The distance between the first-order and second order bright fringe.
(b)
Answer to Problem 76PQ
The distance between the first-order and second order bright fringe is
Explanation of Solution
Write the expression for the angle made by a particular interference fringe on the screen from the central maximum.
Here,
Here, for the small angle approximation.
Substitute
Write the expression for the distance between two successive maximum fringes on the screen from the above equation.
Conclusion:
Substitute
Therefore, the distance between the first-order and second order bright fringe is
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Red, yellow, green, and blue light with wavelengths of λred=700 nm , λyellow=580 nm , λgreen=520 nm , and λblue=475 nm are directed at a slit that is 20 μm wide at normal incidence. The light hits a screen 1 m behind the slit. Which color of light will have an interference minimum closest to a point 10 cm away from its central maxima? You may assume the small angle approximation sinθ≈tanθ≈θ for angles smaller than 10∘ . Just enter the wavelength of that color in nm, nothing else.arrow_forwardIn the circuit shown, the switch is initially open and the capacitor isuncharged. What will be the current through R1 the instant after the switch isclosed? Take V=10 V, R1 = 20 W, R2 = 20 W, R3 = 10 W and C = 2 mF.arrow_forwardIn the circuit shown take: V1 = 20V, V2 = 40V, R1 = 5W, R2 = 2W and R3 =10W. If i1 = 2A, what is i3 if the assumed direction of the current is as shown.arrow_forward
- Consider the circuit shown in the figure below. (Let R = 12.0 (2.) 25.0 V 10.0 www 10.0 Ω b www 5.00 Ω w R 5.00 Ω i (a) Find the current in the 12.0-0 resistor. 1.95 × This is the total current through the battery. Does all of this go through R? A (b) Find the potential difference between points a and b. 1.72 × How does the potential difference between points a and b relate to the current through resistor R? Varrow_forward3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…arrow_forward1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by steparrow_forward
- In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.arrow_forwardNo chatgpt pls will upvotearrow_forward8.114 CALC A Variable-Mass Raindrop. In a rocket-propul- sion problem the mass is variable. Another such problem is a rain- drop falling through a cloud of small water droplets. Some of these small droplets adhere to the raindrop, thereby increasing its mass as it falls. The force on the raindrop is dp dv dm Fext = + dt dt dt = Suppose the mass of the raindrop depends on the distance x that it has fallen. Then m kx, where k is a constant, and dm/dt = kv. This gives, since Fext = mg, dv mg = m + v(kv) dt Or, dividing by k, dv xgx + v² dt This is a differential equation that has a solution of the form v = at, where a is the acceleration and is constant. Take the initial velocity of the raindrop to be zero. (a) Using the proposed solution for v, find the acceleration a. (b) Find the distance the raindrop has fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s. (For many more intriguing aspects of this problem, see K. S. Krane, American Journal of…arrow_forward
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning