Concept explainers
(a)
The angles corresponding to the locations of the first three orders of fringes away from the central bright fringe.
(a)
Answer to Problem 76PQ
The angle made by the first bright fringe is
Explanation of Solution
Write the expression for the path difference for bright fringes in Young’s double slit experiment.
Here,
Rearrange the above equation.
Write the expression for the angle made by the first bright fringe from the above equation.
Write the expression for the angle made by the second bright fringe from the equation (II).
Write the expression for the angle made by the third bright fringe from the equation (II).
Conclusion:
Substitute
Substitute
Substitute
Therefore, the angle made by the first bright fringe is
(b)
The distance between the first-order and second order bright fringe.
(b)
Answer to Problem 76PQ
The distance between the first-order and second order bright fringe is
Explanation of Solution
Write the expression for the angle made by a particular interference fringe on the screen from the central maximum.
Here,
Here, for the small angle approximation.
Substitute
Write the expression for the distance between two successive maximum fringes on the screen from the above equation.
Conclusion:
Substitute
Therefore, the distance between the first-order and second order bright fringe is
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- A hydrogen gas discharge lamp emits visible light at four wavelengths, =410 , 434, 486, and 656 nm. (a) If light from this lamp falls on a N slits separated by 0.025 mm, how far from the central maximum are the third maxima when viewed on a screen 2.0 m from the slits? (b) By what distance are the second and third maxima separated for l=486 nm?arrow_forwardRed light of wavelength of 700 nm falls on a double slit separated by 400 nm. (a) At what angle is the first-order maximum in the diffraction pattern? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardIntense white light is incident on a diffraction grating that has 600. lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (b) What is the angular separation between the violet edge (400. nm) and the red edge (700. nm) of the first-order spectrum produced by the grating?arrow_forward
- (a) Find the angle between the first minima for the two sodium vapor lines, which have wavelengths of 589.1 and 589.6 nm, when they fall upon a single slit of width 2.00 m. (b) What is the distance between these minima if the diffraction pattern falls on a screen 1.00 m from the slit? (c) Discuss the ease or difficulty of measuring such a distance.arrow_forwardTwo slits of width 2 m, each in an opaque material, are separated by a center-to-center distance of 6 m. A monochromatic light of wavelength 450 nm is incident on the double-slit. One finds a combined interference and diffraction pattern on the screen. (a) How many peaks of the interference will be observed in the central maximum of the diffraction pattern? (b) How many peaks of the interference will be observed if the slit width is doubled while keeping the distance between the slits same? (c) How many peaks of interference will be observed if the slits are separated by twice the distance, that is, 12 m, while keeping the widths of the slits same? (d) What will happen in (a) if instead of 450-nm light another light of wavelength 680 nm is used? (e) What is the value of the ratio of the intensity of the central peak to the intensity of the next bright peak in (a)? (f) Does this ratio depend on the wavelength of the light? (g) Does this ratio depend on the width or separation of the slits?arrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forward
- Microwaves of wavelength 10.0 mm fall normally on a metal plate that contains a slit 25 mm wide. (a) Where are the first minima of the diffraction pattern? (b) Would there be minima if the wavelength were 30.0 mm?arrow_forwardBlue light of wavelength 450 nm falls on a slit of width 0.25 mm. A converging lens of focal length 20 cm is placed behind the slit and focuses the diffraction pattern on a screen. (a) How far is the screen from the lens? (b) What is the distance between the first and the third minima of the diffraction pattern?arrow_forwardA Two slits are separated by distance d and each has width w. If d = 2w, how many bright fringes are within the central maximum of the diffraction pattern?arrow_forward
- (a) At what angle is the first minimum for 550-nm light falling on a single slit of width 1.00 m? (b) Will there be a second minimum?arrow_forwardIn Figure P36.10 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4? Figure P36.10arrow_forward(a) At what angle is the first minimum for 550-nm light falling on a single slit of width 1.00 m ? (b) Will there be a second minimum?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax