Concept explainers
The angular spread of visible light passing through a prism.
Answer to Problem 35.39P
The angular spread of visible light passing through a prism is
Explanation of Solution
Given info: The index of refraction for violet light in silica flint glass is
The figure of light ray passing through the prism is shown as below,
The expression of the Snell’s law is,
Here,
For the red color:
Consider the angle of refraction on the first face of the prism is
Substitute
Thus, the angle of refraction on the first face of the prism is
The angle of incidence on the second face of the prism is,
Here,
Substitute
Consider the angle of refraction on the second face of the prism is
Substitute
Thus, the angle of refraction on the second face of the prism is
The angle of deviation is,
Here,
Substitute
Thus, the angle of deviation for red color is
For the violet color:
Consider the angle of refraction on the first face of the prism is
Substitute
Thus, the angle of refraction on the first face of the prism is
The angle of incidence on the second face of the prism is,
Substitute
Consider the angle of refraction on the second face of the prism is
Substitute
Thus, the angle of refraction on the second face of the prism is
The angle of deviation is,
Substitute
Thus, the angle of deviation for violet color is
The angular spread of visible light passing through a prism is,
Substitute
Conclusion:
Therefore, the angular spread of visible light passing through a prism is
Want to see more full solutions like this?
Chapter 35 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Light is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardFigure P23.28 shows a curved surface separating a material with index of refraction n1 from a material with index n2. The surface forms an image I of object O. The ray shown in red passes through the surface along a radial line. Its angles of incidence and refraction are both zero, so its direction does not change at the surface. For the ray shown in blue, the direction changes according to n1 sin 1 = n2 sin 2. For paraxial rays, we assume 1 and 2 are small, so we may write n1 tan 1 n2 tan 2. The magnification is defined as M = h/h. Prove that the magnification is given by M = n1q/n2p. Figure P23.28arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forward
- Consider a beam of light from the left entering a prism of apex angle as shown in Figure P34.34. Two angles of incidence, 1, and 3, are shown as Hell as two angles of refraction, 2 and 4. Show that = 1 + 3. Figure P34.34arrow_forwardA man shines a flashlight from a boat into the water, illuminating a rock as in Figure P22.21. What is the angle of incidence 1?arrow_forwardA green laser beam travels through the an L-shaped block of transparent blue plastic with an angle 00 = 38. above the x axis. The index of refraction of the blue plastic is nb = 1.90. The beam passes into a rectangular block of transparent yellow plastic, and the refracted ray then has an angle of Oy = 43., as shown in the figure below. %3D a. What is the speed of the laser beam as it travels through the blue plastic? b. What is the index of refraction ny of the yellow plastic? c. When the refracted laser beam reaches the other edge of the yellow plastic, it is refracted again as it re-enters the blue plastic. What is the final direction Of of the beam above the x axis?arrow_forward
- 71. A light ray enters a rectangular block of plastic at an angle& 1 ! 45.0° and emerges at an angle & 2 ! 76.0°, as shownin Figure P35.71. (a) Determine the index of refraction ofthe plastic. (b) If the light ray enters the plastic at a pointL ! 50.0 cm from the bottom edge, how long does it takethe light ray to travel through the plastic?arrow_forwardSapphire has an index of refraction of 1.80. What is its critical angle of incidence when in air? 1.16° 55.6° 33.7° 65.2° 87.4° Light travels from leaded glass into water with an angle of refraction of 35.4 °. The angle of incidence is 26.9o. If the refractive index of water is 1.33, what is the refractive index of the leaded glass? 1.04 1.50 1.70 1.90 1.33 Correct answers are noted can you help expalin why?arrow_forwardM7arrow_forward
- A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degreesarrow_forward. a. A ray of light enters a fiber optic cable with index of refraction n from air at an angle as shown below. Let the angle 0 be 69°. For total internal reflection to occur at the cable- air interface, what must be the value of n? n=1.3 nair = 1 Bd OR 8 n Think & Prepare You have three unkowns in this problem, the angle of refraction R, the angle of refraction and n. 1. Set-up Snell's Law equation relating 6, R, and n. 2. Set-up the critical angle relationship between cand n 3.0+0=? sine 4. You may need some trigonometric identities such as sin (90° - 0) = ? and = 2. cose b. In the problem above, the angle e increases. How does this affect what n must be to ensure total internal reflection? A) n will decrease because the critical angle will become larger B) n will decrease becuase the equation for the critical angle is proportional to 1/n of the material C) n will increase because the critical angle will become smaller D) n will increase becuase the equation for the critical angle is…arrow_forwardA ray of light originates inside the glass filled with water, as shown in the figure. It travels through water, in incident on the glass side, and emerges into the air. Ignore any partial reflections. What is the values of angles Q? Water n=1.33 370 Air Glass n = 1.0 n= 1.5 32.25° 67.16° 53.17° 35.89°arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning