As sunlight enters the Earth’s atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon andthe instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this linejust dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth’s atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.
As sunlight enters the Earth’s atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon andthe instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this linejust dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth’s atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.
As sunlight enters the Earth’s atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon andthe instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this linejust dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth’s atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.
As sunlight enters the Earth’s atmosphere, it changes direction due to the small difference between the speeds of light in vacuum and in air. The duration of an optical day is defined as the time interval between the instant when the top of the rising Sun is just visible above the horizon and the instant when the top of the Sun just disappears below the horizontal plane. The duration of the geometric day is defined as the time interval between the instant a mathematically straight line between an observer and the top of the Sun just clears the horizon and the instant this line just dips below the horizon. (a) Explain which is longer, an optical day or a geometric day. (b) Find the difference between these two time intervals. Model the Earth’s atmosphere as uniform, with index of refraction 1.000 293, a sharply defined upper surface, and depth 8 614 m. Assume the observer is at the Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon.
Definition Definition Rate at which light travels, measured in a vacuum. The speed of light is a universal physical constant used in many areas of physics, most commonly denoted by the letter c . The value of the speed of light c = 299,792,458 m/s, but for most of the calculations, the value of the speed of light is approximated as c = 3 x 10 8 m/s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.