Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 35.15CQ
To determine
The reason for astronomer talk about talk about looking backward in time when they looking at distant galaxies.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Do it asap
U3
When we look at the Sun, we are seeing it as it was 8 minutes ago. So we can only see the Sun “in the past.” When you look at the back of your own hand, do you see it “now” or in “the past”?
Chapter 35 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 35 - Prob. 35.1QQCh. 35 - If beam is the incoming beam in Figure 34.10b,...Ch. 35 - Light passes from a material with index of...Ch. 35 - In photography, lenses in a camera use refraction...Ch. 35 - Prob. 35.5QQCh. 35 - In each of the following situations, a wave passes...Ch. 35 - A source emits monochromatic light of wavelength...Ch. 35 - Carbon disulfide (n = 1.63) is poured into a...Ch. 35 - A light wave moves between medium 1 and medium 2....Ch. 35 - What happens to a light wave when it travels from...
Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When you look at distant galaxy through a telescope, how is it that you are looking backward in time?arrow_forwardA square with an edge 8 cm long has an area of (8cm)(8cm) = 64 cm2. What is this area in square meters? Group of answer choices 0.64 square meters 0.0064 square meters 6400 square meters 640,000 square meters Which of the following does NOT correspond to the dimension of length? Group of answer choices fathom yard kilometer parsec angstrom light-year More than one of these is not a unit of length All of these are units of lengtharrow_forwardApproximately how many times could light travel around the Earth in one second? 5 times 7 times 70 times 1 timearrow_forward
- The speed of light in free space has been measured to be 2.99792458 × 10^8 (A) 3 Significant Figures (B) 5 Significant Figures (C) 7 Significant Figuresarrow_forwardThe Hydra galaxy is moving away from Earth at 6 x 10^7 m/s. What fraction of the speed of light is this? Draw a sketch to illustrate your ideas and support your calculationarrow_forwardO O o O O 2. 2536?module_item_id3D3790194 1 dozen = 12 things 1 day 24 hours 1 mile 5280 feet 1 meter 100 centimeters 1 year 365 days 1 six-pack = 6 cans 1 hour = 60 minutes 12 inches = 1 foot 1000 meters = 1 kilometer 1 case 24 cans 1 minute = 60 seconds 1 inch = 2.54 centimeters %3D 1 cup 8 ounces 1 box of Bisquick contains 96 ounces of pancake mix %3D 1. Billy has trouble with math, and his answer is "10" to the following question, "How 120 dozen?" a. What is the correct answer? b. What advice can you give Billy to help him do the calculation correctly? If I want 72 cans of soda, how many six-packs should I buy? 3. How many cases of soda should be bought if 8 dozen soda cans are wanted? 4. One million seconds are how many days? vork (hand-written, typed, or drawn on paper or on a computer).arrow_forward
- Mention what is the speed of light in space?arrow_forwardA light-year is the distance that light can travel in one year. Similarly, we can define a light-second, light-day, etc. as the distance that light can travel in other time intervals. Calculate the distance represented by each of the following: (Assume that the speed of light is 3 x 10^8m/s) 5 light-minutes 6 light-days 6 light-days, but this time answer in miles (enter just the number with no units)arrow_forwardA searchlight is directed to a plane flying directly above the light at an altitude of 3km and at a speed of 300km per hour. how fast is the light turning 3 seconds after the plane flies directly overhead?arrow_forward
- The farthest objects in our Universe discovered by modern astronomers are so distant that light emitted by them takes billions of years to reach the Earth. These objects (known as quasars) have many puzzling features, which have not yet been satisfactorily explained. What is the distance in km of a quasar from which light takes 3.0 billion years to reach us ?arrow_forwardThe German-born, American physicist Albert Michelson devoted much of his life to the accurate measurement of the speed of light. In 1923, he positioned mirrors and detectors on two different California mountains positioned nearly 35 km (nearly 22 miles) apart. Using a sophisticated timing method of involving the rotating of octagonal mirrors, Michelson determined the speed of light to be 299,774 km/sec. At this speed, estimate the time it takes light to travel 35 km between mountains.arrow_forwardHow many seconds are there in one light-year? 1 year = 365 days 3.15 x 105 seconds 3.15 x 106 seconds 3.15 x 107 seconds This makes absolutely no sensearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning