Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 35.61AP
(a)
To determine
The angle of incidence for which the angle of refraction is half the angle of incidence.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Physics
A beam of light strikes the surface of glass (n = 1.46) at an angle of 70 degrees with respect to the normal. Find the angle of refraction inside the glass. Take the index of refraction of air n1 = 1.
As shown in the figure, a light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2for the light in the olive oil is 33.4°, determine the angle of incidence ?1in air and the angle of refraction ?3in water. The index of refraction for olive oil is 1.47.?1 = °?3 = °
A light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2 for the light in the olive oil is 30.6°, determine the angle of incidence ?1 in air and the angle of refraction ?3 in water. The index of refraction for olive oil is 1.47.
Chapter 35 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 35 - Prob. 35.1QQCh. 35 - If beam is the incoming beam in Figure 34.10b,...Ch. 35 - Light passes from a material with index of...Ch. 35 - In photography, lenses in a camera use refraction...Ch. 35 - Prob. 35.5QQCh. 35 - In each of the following situations, a wave passes...Ch. 35 - A source emits monochromatic light of wavelength...Ch. 35 - Carbon disulfide (n = 1.63) is poured into a...Ch. 35 - A light wave moves between medium 1 and medium 2....Ch. 35 - What happens to a light wave when it travels from...
Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardA ray of light is incident upon a surface of a block of transparent material, as shown in the figure. The material outside the block (n₁ =1) is air. The block's material has an index of refraction n₂ 1.48. The angle of incidence 8₁ = 51.0 degrees. Note that this angle is measured relative to the surface normal (the dotted line perpendicular to the surface). What is the angle of reflection (0₁')? 0₁' = degrees Part of the ray is refracted upon entering the material. What is the angle of refraction within the material (0₂)? 0₂ = degrees What would the block's index of refraction need to become in order for the angle of refraction (02) to be 2 degrees less than what it was originally? New n₂ = n₁ n₂ 0₁' reflected ray refracted ray :0₂arrow_forwardA narrow beam of light is incident from air onto a glass surface with index of refraction 1.56. Find the angle of incidence for which the corresponding angle of refraction is one-half the angle of incidence. Hint: You might want to use the trigonometric identity sin 20 = 2 sin0 cos θarrow_forward
- A ray of light strikes a flat block of glass at an incidence angle of ?1 = 38.6°. The glass is 2.00 cm thick and has an index of refraction that equals ng = 1.52. (a) What is the angle of refraction, ?2,that describes the light ray after it enters the glass from above? (Enter your answer in degrees to at least 2 decimal places.) b.)With what angle of incidence, ?3,does the ray approach the interface at the bottom of the glass? (Enter your answer in degrees to at least 2 decimal places.)arrow_forwardA light ray travels from air (n=1.00) into a crown glass (n=1.52) with an angle of incidence of 49 degrees. The light ray continues to travel through the crown glass material into the diamond (n=2.42). At what angle does the light ray make with the normal line as it enters the diamond?arrow_forwardA ray of sunlight is passing from diamond into crown glass; the angle of incidence is 30.00°. The indices of refraction for the blue and red components of the ray are: blue (ndiamond = 2.444, ncrown glass = 1.531), and red (ndiamond = 2.410, ncrown glass = 1.520). Determine the angle between the refracted blue and red rays in the crown glass. %3D Additional Materials eBook 398 1,375 APR 21 étv MacBook Air 80 esc F5 F6 F7 F1 F2 F3 F4 #3 %$4 % & 1 2 3. 4 Y くOarrow_forward
- A light ray traveling in air is incident on one face of a right angle prism with index of refraction n = 1.50 as shown in the figure below, and the ray follows the path shown in the figure. Assuming θ = 60.5° and the base of the prism is mirrored, determine the angle ϕ made by the outgoing ray with the normal to the right face of the prism.arrow_forwardA ray of light hits the surface between air and an unknown material at an angle A of 46.8°. The index of refraction of the material is 1.287. What is the angle of refraction?arrow_forwardAn incident light ray is aimed at the open top of a tank filled with Benzene, kerosene and glycerin. Determine the angle of incidence and refraction of the light at the 1st and 3rd mediums if the angle in the 2nd medium is 20°. The indices of refraction for kerosene and glycerin are 1.39 and 1.46 respectively. What is the index of refraction of the first medium if the light ray travels the first medium at is 2 x 10^8 m/s.arrow_forward
- An aquarium is filled with water to a height of h A ray of light passes through the air above (n1 down into the water (n2 01 = 24°. It reflects off the bottom surface of the glass and travels upward back toward the water-air boundary. When 7.5 cm. 1.00) and 1.33) with an angle of incidence A this ray of light emerges from the water and back into the air, how far will it be from the point where it first entered the water?arrow_forwardA) A ray of light passes from water (n,= 1.33) carbon disulfide (n, 1.63) With an angle of incidence of 30° . What is the angle of refraction in the carbon disulfide ? B) Calculate the angle of refraction for light as it passes from Air (n- 1.00) to plexiglass (n, 1.51) at an incident angle of 25°. C) A light ray moving through CR39 (n1- 1.498) at an angle of 49° exit into another medium at an angle of 27.48 °. What is the index of the second medium ?arrow_forwardAt what angle should a ray of light be incident on the face of a prism of refracting angle 60° so that it just suffers total internal reflection at the other face? The refractive index of the material of the prism is 1.524arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY