Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 35, Problem 35.43P
To determine
The smallest angle of incidence for which a light ray can emerge from the other side.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A light ray traveling in air is incident on one face of a right-angle prism with index of refraction n = 1.49, as shown in Figure P22.54, and the ray follows the path shown in the figure. Assuming that θ = 58.0° and the base of the prism is mirrored, determine the angle made by the outgoing ray with the normal to the right face of the prism.?degrees
The angle of a prism is A°. One of its refracting surfaces is silvered. Light rays falling at an
angle of incidence 24 on the first surface returns back through the same path after suffering
reflection at the silvered surface. The refractive index u , of the prism is :
a. 2 cos A
1
b.
cos A
c. tan A
d. 2 sin A
Figure P22.59 shows the path of a beam of light through severallayers with different indices of refraction. (a) If Θ1 = 30.0°,what is the angle Θ2 of the emerging beam? (b) What must
the incident angle Θ1 be to have total internal reflection at thesurface between the medium with n = 1.20 and the mediumwith n = 1.00?
Chapter 35 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 35 - Prob. 35.1QQCh. 35 - If beam is the incoming beam in Figure 34.10b,...Ch. 35 - Light passes from a material with index of...Ch. 35 - In photography, lenses in a camera use refraction...Ch. 35 - Prob. 35.5QQCh. 35 - In each of the following situations, a wave passes...Ch. 35 - A source emits monochromatic light of wavelength...Ch. 35 - Carbon disulfide (n = 1.63) is poured into a...Ch. 35 - A light wave moves between medium 1 and medium 2....Ch. 35 - What happens to a light wave when it travels from...
Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardWhen (the light ray illustrated in Figure P35.22 passes through the glass block of index of refraction n= 1.50, it is shifted laterally by the distance d.(a) Find the value of d. (b) Find the time interval required for the light to pass through the glass block.arrow_forwardA diamond in air is illuminated with white light. On one particular facet, the angle of incidence is 32.50°. Inside the diamond, red light (λ = 660.0 nm in vacuum) is refracted at 10.48° with respect to the normal; blue light (λ = 470.0 nm in vacuum) is refracted at 10.33°. What is the index of refraction for red light in diamond? What is the index of refraction for blue light in diamond? What is the ratio of the speed of red light to the speed of blue light in diamond?arrow_forward
- As shown in Figure P35.73, a light ray is incident normal to one face of a 30°-60°-90° block of flint glass (a prism) that is immersed in water. (a) Determine the exit angle θ3 of the ray.(b) A substance is dissolved in the water to increase the index of refraction n2. At what value of n2 does total internal reflection cease at point P?arrow_forwardAn optical cable in air is orientated horizontally. The cable has a core and a cladding layer. The index of refraction for the core is 1.3 and the index of refraction for the cladding layer is 1.2. A light ray enters the center of the cable with an incident angle ß=58°. The ray is subsequently refracted at the core-cladding interface and the cladding-air interface. The angle between the exit ray and the cable wall is a. What is the angle a? The index of refraction of air is 1. ←cladding -corearrow_forwardThe drawing shows a crystalline slab (refractive index 1.394) with a rectangular cross section. A ray of light strikes the slab at an incident angle of 0₁ = 41.0°, enters the slab, and travels to point P. This slab is surrounded by a fluid with a refractive index n. What is the maximum value of n such that total internal reflection occurs at point P? ATT Number i Units 01arrow_forward
- A light ray enters a rectangular block of plastic at an angle Ɵ1 = 45.0˚ and emerges at an angle Ɵ2 = 76.0˚ , as shown in figure P22.57 (a)Determine the index of refraction of the plastic. (b) If the light ray enters the plastic at a point L=50.0cm from the bottom edge, how long does it take the light ray to travel through the plastic?arrow_forwardA transparent cylinder of radius R = 2.00 m has a mirrored surface on its right half, as shown in Figure P22.55 (page 800). A light ray traveling in air is incident on the left side of the cylinder. The incident light ray and the exiting light ray are parallel, and d = 2.00 m. Determine the index of refraction of the material.arrow_forwardA 1.00-cm-thick by 4.00-cm-long glass plate is made up of two fused prisms. The top prism has an index of refraction of 1.486 and the bottom has an index of refraction of 1.878. A light ray is incident on the top face as shown in the figure to the right. The reflected ray A is completely linearly polarized. Determine the exit angle of this ray that pass through the prisms.arrow_forward
- The drawing shows a rectangular block of glass (n = 1.52) surrounded by a liquid with n = 1.65. A ray of light is incident on the glass at point A with a 30.0° angle of incidence. At what angle does the ray leave the glass at point B? Number Units 30.0arrow_forwardA light ray in air hits the surface of a particular liquid at an angle of incidence of 74.7°. The angle of refraction in this liquid is 50.0°. Calculate the speed of light (in 108 m/s) in this liquid. Enter the numerical part of your answer to three significant figures. The speed of light in a vacuum = c = 3.00 × 108 m/s.arrow_forwardA beaker with a mirrored bottom is filled with a liquid whose index of refraction is nliq = 1.41. A light ray from air strikes the top surface of the liquid at an incident angle θin = 52.7° from the normal line to the liquid surface, as shown in the figure. What is the refraction angleθ3 of the light ray as it enters the liquid (in degrees; remember to use the scientific notation of numbers)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning