Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 35, Problem 35.27P
To determine
The depth of the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An opaque cylindrical tank with an open top has a diameter of 3.25 m and is completely filled with water. When the afternoon Sun reaches an angle of 33.6° above the horizon, sunlight ceases to illuminate the bottom of the tank. How deep is the tank?m
= 1.30 x 104°C-1). At room temperature (20.0°C), the frames have circular lens
A pair of eyeglass frames are made of an epoxy plastic (coefficient of linear expansion
holes 2.23 cm in radius. To what temperature must the frames be heated if lenses 2.24 cm in radius are to be inserted into them?
A flask of ammonia is connected to a flask of an unknown acid HX by a 1.30 cm glass tube (where "X" represents a halogen). As the two gases diffuse down the tube, a white ring of NH4X forms 89.1 cm from the ammonia flask. Identify element X (Name or symbol).
Chapter 35 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 35 - Prob. 35.1QQCh. 35 - If beam is the incoming beam in Figure 34.10b,...Ch. 35 - Light passes from a material with index of...Ch. 35 - In photography, lenses in a camera use refraction...Ch. 35 - Prob. 35.5QQCh. 35 - In each of the following situations, a wave passes...Ch. 35 - A source emits monochromatic light of wavelength...Ch. 35 - Carbon disulfide (n = 1.63) is poured into a...Ch. 35 - A light wave moves between medium 1 and medium 2....Ch. 35 - What happens to a light wave when it travels from...
Ch. 35 - The index of refraction for water is about 43....Ch. 35 - Prob. 35.7OQCh. 35 - What is the order of magnitude of the time...Ch. 35 - Prob. 35.9OQCh. 35 - Prob. 35.10OQCh. 35 - A light ray navels from vacuum into a slab of...Ch. 35 - Suppose you find experimentally that two colors of...Ch. 35 - Prob. 35.13OQCh. 35 - Which color light refracts the most when entering...Ch. 35 - Prob. 35.15OQCh. 35 - Prob. 35.1CQCh. 35 - Prob. 35.2CQCh. 35 - Prob. 35.3CQCh. 35 - The F-117A stealth fighter (Fig. CQ35.4) is...Ch. 35 - Prob. 35.5CQCh. 35 - Prob. 35.6CQCh. 35 - Prob. 35.7CQCh. 35 - Prob. 35.8CQCh. 35 - A laser beam passing through a non homogeneous...Ch. 35 - Prob. 35.10CQCh. 35 - Prob. 35.11CQCh. 35 - (a) Under what conditions is a mirage formed?...Ch. 35 - Figure CQ35.13 shows a pencil partially immersed...Ch. 35 - Prob. 35.14CQCh. 35 - Prob. 35.15CQCh. 35 - Prob. 35.16CQCh. 35 - Prob. 35.17CQCh. 35 - Prob. 35.1PCh. 35 - The Apollo 11 astronauts set up a panel of...Ch. 35 - Prob. 35.3PCh. 35 - As a result of his observations, Ole Roemer...Ch. 35 - The wavelength of red helium-neon laser light in...Ch. 35 - An underwater scuba diver sees the Sun at an...Ch. 35 - A ray of light is incident on a flat surface of a...Ch. 35 - Figure P35.8 shows a refracted light beam in...Ch. 35 - Prob. 35.9PCh. 35 - A dance hall is built without pillars and with a...Ch. 35 - Prob. 35.11PCh. 35 - A ray of light strikes a flat block of glass (n =...Ch. 35 - A prism that has an apex angle of 50.0 is made of...Ch. 35 - Prob. 35.14PCh. 35 - A light ray initially in water enters a...Ch. 35 - A laser beam is incident at an angle of 30.0 from...Ch. 35 - A ray of light strikes the midpoint of one face of...Ch. 35 - Prob. 35.18PCh. 35 - When you look through a window, by what time...Ch. 35 - Two flat, rectangular mirrors, both perpendicular...Ch. 35 - Prob. 35.21PCh. 35 - Prob. 35.22PCh. 35 - Two light pulses are emitted simultaneously from a...Ch. 35 - Light passes from air into flint glass at a...Ch. 35 - A laser beam with vacuum wavelength 632.8 nm is...Ch. 35 - A narrow beam of ultrasonic waves reflects off the...Ch. 35 - Prob. 35.27PCh. 35 - A triangular glass prism with apex angle 60.0 has...Ch. 35 - Light of wavelength 700 nm is incident on the face...Ch. 35 - Prob. 35.30PCh. 35 - Prob. 35.31PCh. 35 - Prob. 35.32PCh. 35 - Prob. 35.33PCh. 35 - A submarine is 300 m horizontally from the shore...Ch. 35 - Prob. 35.35PCh. 35 - The index of refraction for red light in water is...Ch. 35 - A light beam containing red and violet wavelengths...Ch. 35 - The speed of a water wave is described by v=gd,...Ch. 35 - Prob. 35.39PCh. 35 - Prob. 35.40PCh. 35 - A glass optical fiber (n = 1.50) is submerged in...Ch. 35 - For 589-nm light, calculate the critical angle for...Ch. 35 - Prob. 35.43PCh. 35 - A triangular glass prism with apex angle has an...Ch. 35 - Prob. 35.45PCh. 35 - Prob. 35.46PCh. 35 - Consider a common mirage formed by superheated air...Ch. 35 - A room contains air in which the speed of sound is...Ch. 35 - An optical fiber has an index of refraction n and...Ch. 35 - Prob. 35.50PCh. 35 - Prob. 35.51APCh. 35 - Consider a horizontal interface between air above...Ch. 35 - Prob. 35.53APCh. 35 - Why is the following situation impossible? While...Ch. 35 - Prob. 35.55APCh. 35 - How many times will the incident beam in Figure...Ch. 35 - When light is incident normally on the interface...Ch. 35 - Refer to Problem 37 for its description of the...Ch. 35 - A light ray enters the atmosphere of the Earth and...Ch. 35 - A light ray enters the atmosphere of a planet and...Ch. 35 - Prob. 35.61APCh. 35 - Prob. 35.62APCh. 35 - Prob. 35.63APCh. 35 - Prob. 35.64APCh. 35 - The light beam in Figure P35.65 strikes surface 2...Ch. 35 - Prob. 35.66APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - Prob. 35.68APCh. 35 - A 4.00-m-long pole stands vertically in a...Ch. 35 - As sunlight enters the Earths atmosphere, it...Ch. 35 - Prob. 35.71APCh. 35 - A ray of light passes from air into water. For its...Ch. 35 - As shown in Figure P35.73, a light ray is incident...Ch. 35 - Prob. 35.74APCh. 35 - Prob. 35.75APCh. 35 - Prob. 35.76APCh. 35 - Prob. 35.77APCh. 35 - Students allow a narrow beam of laser light to...Ch. 35 - Prob. 35.79APCh. 35 - Figure P34.50 shows a top view of a square...Ch. 35 - Prob. 35.81CPCh. 35 - Prob. 35.82CPCh. 35 - Prob. 35.83CPCh. 35 - Pierre de Fermat (16011665) showed that whenever...Ch. 35 - Prob. 35.85CPCh. 35 - Suppose a luminous sphere of radius R1 (such as...Ch. 35 - Prob. 35.87CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) An opaque cylindrical tank with an open top has a diameter of 2.65 m and is completely filled with water. When the afternoon sun reaches an angle of 31.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank (in m)? m (b) What If? On winter solstice in Seattle, the sun reaches a maximum altitude of 19° above the horizon. What would the depth of the tank have to be (in m) for the sun not to illuminate the bottom of the tank on that day? marrow_forward(a) An opaque cylindrical tank with an open top has a diameter of 3.10 m and is completely filled with water. When the afternoon sun reaches an angle of 30.0° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. How deep is the tank (in m)? m (b) What If? On winter solstice in Honolulu, the sun reaches a maximum altitude of 45.3° above the horizon. What would the depth of the tank have to be (in m) for the sun not to illuminate the bottom of the tank on that day?arrow_forwardA glass tumbler having inner depth of 17.5 cm is kept on a table. A student starts pouring water (μ 4/3) into it while looking at the surface of water from the above. When he feels that the = tumbler is half filled, he stops pouring water. Up to what height, the tumbler is actually filled ?arrow_forward
- 3. A converging lens with a focal length of 12 cm is placed at the center of a flat-end cylindrical glass tube of length 24 cm. The lens forms an insulated, airtight seal that creates two chambers of equal volume, and is free to slide like a piston within the cylinder. A mole of helium is injected into the left chamber, and a mole of molecular (diatomic) hydrogen is injected into the right chamber, and both chambers of gas are at the same temperature. A coordinate system with the lens at x = 0 has been introduced to simplify calculations (see "before" picture below). you before (T₁=T2, lens at x=0, image at x=-84cm) x=-12cm He x=0cm H₂ x=+12cm after (U₁=U₂, lens at x=?, image at x=?) x=-12cm He x=0cm H₂ x = +12cm With the equal-volume chambers enclosing equal numbers of moles of ideal gases at equal temperatures, the pressures must also be equal, which means the lens/piston doesn't move. You look through the left end of this cylinder at an object that is on the right side of the…arrow_forwardYou sight along the rim of a glass with vertical sides so that the top rim is lined up with the opposite edge of the bottom (Fig.a). The glass is a thin-walled, hollow cylinder 16.0 cm high. The diameter of the top and bottom of the glass is 8.0 cm. While you keep your eye in the same position, a friend fills the glass with a transparent liquid, and you then see a dime that is lying at the center of the bottom of the glass (Fig.b). What is the index of refraction of the liquid?arrow_forwardSuppose the two glass plates in Fig are two microscope slides 10.0 cm long. At one end they are in contact; at the other end they are separated by a piece of paper 0.0200 mm thick is a plastic with n = 1.40, the wedge is filled with a silicone grease with n = 1.50, and the bottom plate is a dense flint glass with n = 1.60. What happens now?arrow_forward
- Building contractors often install double-glazed windows to prevent thermal energy (heat) from entering or exiting a building. In addition to being effective insulators, such windows present interesting optical effects. In the figure, a double-glazed window consists of two identical panes of glass (ng = 1.54), each yg = 22.0 mm thick, separated by an air gap of y₁ = 17.6 mm. Use na = 1.00 for the index of refraction of air. If light incident on the glass makes an angle of d = 40.00° with respect to the glass, find the shift in path Ax as the light enters the room. Ax = glass air glass mmarrow_forwardYou have just installed a new bathroom in your home. Your shower doors have frosted glass to provide privacy for the person using the shower. The frosted surface is on the outside of the shower door, facing the rest of the bathroom. The frosting is done by acid etching the surface so that lightincident on the rough surface is scattered in all directions. Proud of your new bathroom, you take a photo of it with your smartphone. You notice in the photograph that you can see a reflection of the flash in the shower doors and the reflection is surrounded by a halo of light. Curious, you turn on a laser pointer and aim it at the shower door. Looking closely at the reflection, you again see a halo that consists of a dark area surrounding the reflection of the pointer and then an area of brightness outside this dark ring. You grab a micrometer and a ruler and measure the thickness ofthe glass to be 6.35 mm and the inner radius of the bright halo to be 10.7 mm. From these measurements, you…arrow_forwardAn cylindrical opaque drinking glass has a diameter 4 cm and height h, as shown in the figure. An observer's eye is placed as shown (the observer is just barely looking over the rim of the glass). When empty, the observer can just barely see the edge of the bottom of the glass. When filled to the brim with a transparent liquid, the observer can just barely see the center of the bottom of the glass. The liquid in the drinking glass has an index of refraction of 1.15. KRI Oi Calculate the angle 0,. Answer in units of degrees. eyearrow_forward
- The hot-water needs of a household are to be met by heating water at 55°F to 180°F by a parabolic solar collector at a rate of 4 lbm/s. Water flows through a 1.25-in-diameter thin aluminum tube whose outer surface is black-anodized in order to maximize its solar absorption ability. The centerline of the tube coincides with the focal line of the collector, and a glass sleeve is placed outside the tube to minimize the heat losses. If solar energy is transferred to water at a net rate of 400 Btu/h per ft length of the tube, determine the required length of the parabolic collector to meet the hot-water requirements of this house.arrow_forwardEx. 29 : A barrometer tube has a diameter of 4 mm. Calculate the error in the reading if the S.T. of mercury is 0.64 N/m and its angle of contact with glass is 140°. Density of mercury = 1.36 x 104 kg/m %3Darrow_forwardDetermine the force exerted on the perfectly reflecting surface when 47.0 mW beam of radius 1.50 mm is reflected from it. (a) 2.82x10 N (b) 3.13x10-10 N (c) 1.57x10-10 N (d) 6.27x10-10 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY