College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 6CQ
Olbers’s paradox poses an interesting question: If the universe is infinite, then any line of sight should eventually fall on a stars surface. Why then is the sky dark at night? Discuss the commonly accepted evolution of the universe as a solution to this paradox.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5.4 In a negatively curved universe containing only matter (20 < 1, K = -1),
show that the present age of the universe is given by the formula
1
2- S20
cosh-
2(1 – 20)3/2
Hoto
(5.118)
1- 20
Assuming Ho = 68 km s Mpc1, plot to as a function of 20 in the range 0 <
20 s 1.
%3D
Does the universe have a center? Explain.
The visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.
Chapter 34 Solutions
College Physics
Ch. 34 - Explain why it only appears that we are at the...Ch. 34 - If there is no observable edge to the universe,...Ch. 34 - If the universe is infinite, does it have a...Ch. 34 - Another known cause of red shift in light is the...Ch. 34 - If some unknown cause of red shiftsuch as light...Ch. 34 - Olbers’s paradox poses an interesting question: If...Ch. 34 - If the cosmic microwave background radiation...Ch. 34 - The decay of one type of Kmeson is cited as...Ch. 34 - Distances to local galaxies are determined by...Ch. 34 - Distances to very remote galaxies are estimated...
Ch. 34 - If the smallest meaningful time interval is...Ch. 34 - Quantum gravity, if developed, would be an...Ch. 34 - Does observed gravitational lensing correspond to...Ch. 34 - Suppose you measure the red shifts of all the...Ch. 34 - What are gravitational waves, and have they yet...Ch. 34 - Is the event horizon of a black hole the actual...Ch. 34 - Suppose black holes radiate their mass away and...Ch. 34 - Discuss the possibility that star velocities at...Ch. 34 - How does relativistic time dilation prohibit...Ch. 34 - If neutrino oscillations do occur, will they...Ch. 34 - Lacking direct evidence of WIMPs as dark matter,...Ch. 34 - Must a complex system be adaptive to be of...Ch. 34 - State a necessary condition for a System to be...Ch. 34 - What is critical temperature Tc? Do all materials...Ch. 34 - Explain how good thermal contact with liquid...Ch. 34 - Not only is liquid nitrogen a cheaper coolant than...Ch. 34 - For experimental evidence particularly of...Ch. 34 - Discuss whether you think there are limits to what...Ch. 34 - Find the approximate mass of the luminous matter...Ch. 34 - Find the approximate mass of the dark and luminous...Ch. 34 - (a) Estimate the mass of the luminous matter in...Ch. 34 - If a galaxy is 500 Mly away from us, how fast do...Ch. 34 - On average, how far away are galaxies mat are...Ch. 34 - Our solar system orbits the center of the Milky...Ch. 34 - (a) What is the approximate speed relative to us...Ch. 34 - (a) Calculate The approximate age of the universe...Ch. 34 - Assuming a circular orbit for the Sun about the...Ch. 34 - (a) What is the approximate force of gravity on a...Ch. 34 - Andromeda galaxy is the closest large galaxy and...Ch. 34 - (a) A particle and its antiparticle are at rest...Ch. 34 - The average particle energy needed to observe...Ch. 34 - The peak intensity of the CMBR occurs at a...Ch. 34 - (a) What Hubble constant corresponds to an...Ch. 34 - Show that the velocity of a star orbiting its...Ch. 34 - The core of a star collapses during a supernova,...Ch. 34 - Using data from the previous problem, find the...Ch. 34 - Distances to the nearest stars (up to 500 by away)...Ch. 34 - (a) Use the Heisenberg uncertainty principle to...Ch. 34 - Construct Your Own Problem Consider a star moving...Ch. 34 - What is the Schwarzschild radius of a blank hole...Ch. 34 - Black holes with masses smaller than muse formed...Ch. 34 - Supermassive black holes are thought to exist at...Ch. 34 - Construct Your Own Problem Consider a supermassive...Ch. 34 - The characteristic length of entities in...Ch. 34 - If the dark matter in the Milky Way were composed...Ch. 34 - The critical mass density needed to just halt the...Ch. 34 - Assume the average density of the universe is 0.1...Ch. 34 - To get an idea of how empty deep spam is on the...Ch. 34 - A section of superconducting wire carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
For the cross , what is the expected genotype ratio? What is the expected phenotype ratio?
Genetic Analysis: An Integrated Approach (3rd Edition)
In shorthorn cattle, coat color may be red, white, or roan. Roan is an intermediate phenotype expressed as a mi...
Concepts of Genetics (12th Edition)
1. If an object is not moving, does that mean that there are no forces acting on it? Explain.
College Physics: A Strategic Approach (3rd Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Olbers’s paradox poses an interesting question: If the universe is infinite, then any line of sight should eventually fall on astar’s surface. Why then is the sky dark at night? Discuss the commonly accepted evolution of the universe as a solution to thisparadoxarrow_forwardConsider a positively curved universe containing only matter (the "Big Crunch" model discussed in Section 5.4.1). At some time to lerunch/2, during the contraction phase of this universe, an astronomer named Elb- buh Niwde discovers that nearby galaxies have blueshifts (-1 1. Given Ho and So, how long a time will elapse between Dr. Niwde's observations at t = to and the final Big Crunch at t = 5.7 terunch? What is the highest amplitude blueshift that Dr. Niwde is able to observe? What is the lookback time to an object with this blueshift?arrow_forwardI asked the following question and was given the attached solution: Suppose that the universe were full of spherical objects, each of mass m and radius r . If the objects were distributed uniformly throughout the universe, what number density (#/m3) of spherical objects would be required to make the density equal to the critical density of our Universe? Values: m = 4 kg r = 0.0407 m Answer must be in scientific notation and include zero decimal places (1 sig fig --- e.g., 1234 should be written as 1*10^3) I don't follow the work and I got the wrong answer, so please help and show your work as I do not follow along easily thanksarrow_forward
- 1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.arrow_forwardYour friends are talking about Olber's Paradox: Friend 1: When the universe was quite young, it was also quite small, and therefore light was trapped inside the universe. This is why we don't see light from the edge of the universe in every direction. Friend 2: No, Olber's Paradox describes only light from stars, not from galaxies, and why you can't use light from distant stars to see at night. Friend 3: You're both right and you're both wrong. The paradox concerns itself with the expansion of the universe, and explains why light from the early universe was able to be released. Are any of them right, in part or in whole?arrow_forwardmathematician Archimedes, responding to a claim that the number of grains of sand was infinite, calculated that the number of grains of sand needed to fill the universe was on the order of 1063. Our understanding of the size of the universe has changed since then, and we now know that the observable universe alone is a sphere with a radius of 1026 m. Estimating the size of a grain of sand, A) Approximately how many grains of sand would fill the observable universe? B) How many times larger or smaller is this number than Archimedes' result?arrow_forward
- The nearest neutron star (a collated star made primarily of neutrons) is about 3.00 1018 m away from Earth. Given that the Milky Way galaxy (Fig. P1.81) is roughly a disk of diameter 1021 m and thickness 1019 m, estimate the number of neutron stars in the Milky Way to the nearest order of magnitude. Figure P1.81arrow_forwardIt is possible to derive the age of the universe given the value of the Hubble constant and the distance to a galaxy, again with the assumption that the value of the Hubble constant has not changed since the Big Bang. Consider a galaxy at a distance of 400 million light-years receding from us at a velocity, v. If the Hubble constant is 20 km/s per million light-years, what is its velocity? How long ago was that galaxy right next door to our own Galaxy if it has always been receding at its present rate? Express your answer in years. Since the universe began when all galaxies were very close together, this number is a rough estimate for the age of the universe.arrow_forwardWhat is the fate of a closed universe? In what case would that not be true?arrow_forward
- How many galaxies like our own would it take if they were placed edge-to-edge to reach the nearest galaxy? (Hint: See Problems 11 and 12.)arrow_forwardTo get an idea of how empty deep space is on the average, perform the following calculations: (a) Find the volume our Sun would occupy if it had an average density equal to the critical density of 10-26 kg / m3 thought necessary to halt the expansion of the universe. (b) Find the radius of a sphere of this volume in light years. (c) What would this radius be if the density were that of luminous matter, which is approximately 5% that of the critical density? (d) Compare the radius found in part (c) with the 4-ly average separation of stars in the arms of the Milky Way.arrow_forwardIf p = 2.7 x 10-27 kgm-3, what is the radius of curvature R, of Einstein's static universe? How long would it take a photon to circumnavigate such a universe?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY