College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 16PE
Show that the velocity of a star orbiting its galaxy in a circular orbit is inversely proportional to the square root of its orbital radius, assuming the mass of the stars inside its orbit acts like a single mass at the center of the galaxy. You may use an equation from a previous chapter to support your conclusion, but you must justify its use and define all terms used.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A star, which is 2.3 x 1020 m from the center of a galaxy, revolves around that center once every 2.3 x 10% years. Assuming each star in
the galaxy has a mass equal to the Sun's mass of 2.0 x 1030 kg, the stars are distributed uniformly in a sphere about the galactic center,
and the star of interest is at the edge of that sphere, éstimate the number of stars in the galaxy.
Number
i
Units
The geometry of spacetime in the Universe on large scales is determined by the mean energy density of the matter in the Universe, ρ. The critical density of the Universe is denoted by ρ0 and can be used to define the parameter Ω0 = ρ/ρ0. Describe the geometry of space when: (i) Ω0 < 1; (ii) Ω0 = 1; (iii) Ω0 > 1. Explain how measurements of the angular sizes of the hot- and cold-spots in the CMB projected on the sky can inform us about the geometry of spacetime in our Universe. What do measurements of these angular sizes by the WMAP and PLANCK satellites tell us about the value of Ω0?
Can you please help w/ the question in the pic?
This is the data I have so far:
1. Determine the mass M of the massive object at the center of the Milky Way galaxy. Take the distance of one light year to be 9.461x10^15: answer= 4.26*10^37
2.Express your answer in solar masses instead of kilograms, where one solar mass is equal to the mass of the sun, which is 1.99*10^30: answer=2.14*10^7
TIA
Chapter 34 Solutions
College Physics
Ch. 34 - Explain why it only appears that we are at the...Ch. 34 - If there is no observable edge to the universe,...Ch. 34 - If the universe is infinite, does it have a...Ch. 34 - Another known cause of red shift in light is the...Ch. 34 - If some unknown cause of red shiftsuch as light...Ch. 34 - Olbers’s paradox poses an interesting question: If...Ch. 34 - If the cosmic microwave background radiation...Ch. 34 - The decay of one type of Kmeson is cited as...Ch. 34 - Distances to local galaxies are determined by...Ch. 34 - Distances to very remote galaxies are estimated...
Ch. 34 - If the smallest meaningful time interval is...Ch. 34 - Quantum gravity, if developed, would be an...Ch. 34 - Does observed gravitational lensing correspond to...Ch. 34 - Suppose you measure the red shifts of all the...Ch. 34 - What are gravitational waves, and have they yet...Ch. 34 - Is the event horizon of a black hole the actual...Ch. 34 - Suppose black holes radiate their mass away and...Ch. 34 - Discuss the possibility that star velocities at...Ch. 34 - How does relativistic time dilation prohibit...Ch. 34 - If neutrino oscillations do occur, will they...Ch. 34 - Lacking direct evidence of WIMPs as dark matter,...Ch. 34 - Must a complex system be adaptive to be of...Ch. 34 - State a necessary condition for a System to be...Ch. 34 - What is critical temperature Tc? Do all materials...Ch. 34 - Explain how good thermal contact with liquid...Ch. 34 - Not only is liquid nitrogen a cheaper coolant than...Ch. 34 - For experimental evidence particularly of...Ch. 34 - Discuss whether you think there are limits to what...Ch. 34 - Find the approximate mass of the luminous matter...Ch. 34 - Find the approximate mass of the dark and luminous...Ch. 34 - (a) Estimate the mass of the luminous matter in...Ch. 34 - If a galaxy is 500 Mly away from us, how fast do...Ch. 34 - On average, how far away are galaxies mat are...Ch. 34 - Our solar system orbits the center of the Milky...Ch. 34 - (a) What is the approximate speed relative to us...Ch. 34 - (a) Calculate The approximate age of the universe...Ch. 34 - Assuming a circular orbit for the Sun about the...Ch. 34 - (a) What is the approximate force of gravity on a...Ch. 34 - Andromeda galaxy is the closest large galaxy and...Ch. 34 - (a) A particle and its antiparticle are at rest...Ch. 34 - The average particle energy needed to observe...Ch. 34 - The peak intensity of the CMBR occurs at a...Ch. 34 - (a) What Hubble constant corresponds to an...Ch. 34 - Show that the velocity of a star orbiting its...Ch. 34 - The core of a star collapses during a supernova,...Ch. 34 - Using data from the previous problem, find the...Ch. 34 - Distances to the nearest stars (up to 500 by away)...Ch. 34 - (a) Use the Heisenberg uncertainty principle to...Ch. 34 - Construct Your Own Problem Consider a star moving...Ch. 34 - What is the Schwarzschild radius of a blank hole...Ch. 34 - Black holes with masses smaller than muse formed...Ch. 34 - Supermassive black holes are thought to exist at...Ch. 34 - Construct Your Own Problem Consider a supermassive...Ch. 34 - The characteristic length of entities in...Ch. 34 - If the dark matter in the Milky Way were composed...Ch. 34 - The critical mass density needed to just halt the...Ch. 34 - Assume the average density of the universe is 0.1...Ch. 34 - To get an idea of how empty deep spam is on the...Ch. 34 - A section of superconducting wire carries a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
Raw Oysters and Antacids: A Deadly Mix? The highly acidic environment of the stomach kills most bacteria before...
Microbiology with Diseases by Body System (5th Edition)
Match the following cell types with their correct definition. _________Macrophage _________NK cell _________Eos...
Human Anatomy & Physiology (2nd Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Asap, Typed formatarrow_forwardPlease asaparrow_forwardThe kinetic energy of the ejecta from a supernova explosion is about 10^44 joules. Use the formula for kinetic energy to determine the typical speed at which matter is ejected from a supernova with a mass of 10 Msun. Compare that speed with the Sunʹs orbital speed around our galaxy. Based on your comparison, do you think the galaxyʹs gravity would be strong enough to retain the supernova debris if there were no interstellar medium to slow it down? Explain.arrow_forward
- The amount of energy needed to increase the radius of orbit of a 500-kg satellite from its original orbit r-10 000 of radius 10 000 km can be modelled by the function E = 2 ×1010 where E is the energy, in Joules, and r is the new radius, in kilometers. a) Sketch a graph of E versus r for the entire function in a paper-pencil style. Clearly label the axes, scale on both axes, the asymptote(s), and the intercept(s). b) How is the graph of the entire function different from the graph for the real-life situation?arrow_forwardSolve the sup-part (A) only, only typingarrow_forward1. a) Using the virial mass for a spherical distribution of stars of radius R and mass M, find how R depends on o and Lassuming some constant M/L. b) Now, assume that all ellipticals have some constant surface brightness to show that L < 04arrow_forward
- I have the solution, but I have no idea where the equations come from. Could you please explain how this was solved?arrow_forwardThe Small Magellanic Cloud is a dwarf galay orbiting the Milky Way at a distance of 50 kiloparsecs from its center, on a circular orbit. It is moving at a velocity. rolative to the Milky Way, of 207 km/s. What is the mass of the Milky Way, in units of solar masses, inside the Cloud's orbit? B !! 245 If'a quasar emits 10^(10) times the Sun's luminosity, converting 10% of the mass of the material it eats into radiation, how many stars (ach of the Sun's mans) must it consume per year?arrow_forwardWhen you throw a ball into the air, it usually falls back down. If you throw it a little harder, it will take it longer to fall back down. You can throw it so hard that it never falls back down to Earth. This launch speed is called the escape velocity. When you are far from Earth, the potential energy of an object with mass m can no longer be written as PE = mgh. Instead, we must use the equation М-т PE = -G .. 1" M is the mass of the planet you launch from. m is the mass of the object being launched. r is the distance from the center of the planet to the object being launched. G is a universal constant called the gravitational constant (6.67-10-" ). kg-s Notice that the potential energy is 0 when you are infinitely far away from the planet, and negative as you get closer.arrow_forward
- classical mechanics : Captain James T. Kirk of Star Trek fame spent a large portion of his time mining for planets that contained heavy metals after leaving active duty. In order to accomplish this, he put his spaceship into an elliptical orbit around the planet and measured its density (= total mass/volume; a sphere's volume is equal to 4/3pi r^(3)), where r is its radius). Significant concentrations of important heavy metals were probably present on planets with densities higher than normal. The radius of the planet, the period of the orbit, the minimum and greatest distances of his ship from the planet's centre, or r_min and r_max, were the only measurements he took to arrive at this conclusion. The engines of the ship were deactivated during his journey in the elliptic orbit. Ignore any effects the local star might have on the motion. Kirk also knows the mass of his ship. Explain how he was able to determine the planet’s density using this method.arrow_forwardThe sun orbits the center of the Milky Way galaxy for a period of 2.5x10^8 years. (a) Assuming a circular orbit of radius 2.4x10^20 m, compute the mass of the Milky Way. (b) Estimate the number of stars in the Milky Way, assuming the average star mass equals the mass of the sun—2.0x10^30 kgarrow_forward(Astronomy) PSR1913+16 Problem III. As the shape of the graph shown is not skewed, the orbit can be assumed circular. Also assume the system is viewed edge-on (that is, the orbital system is not inclined to the observer). Using these assumptions, the maximum radial velocities, and the orbital period T = 7.75 hours, find the orbital radii of the stars from the center of mass. (Hints: The figures below may be helpful. Use v = 2πr/P, where v is velocity, P is period, and r is radius. Note: redshifts have positive radial velocities values in the upper figure, whereas blueshifts have negative radial velocity values.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON