Concept explainers
For experimental evidence particularly of previously unobserved phenomena, to be taken seriously it must be reproducible or of sufficiently high quality that a single observation is meaningful. Supernova 1987A is not reproducible. How do we know observations of it were valid? The fifth force is not broadly accepted. Is this due to lack of reproducibility or poor−quality experiments (or both)? Discuss why forefront experiments are more subject to observational problems than those involving established phenomena.
Want to see the full answer?
Check out a sample textbook solutionChapter 34 Solutions
College Physics
Additional Science Textbook Solutions
Fundamentals of Anatomy & Physiology (11th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
College Physics: A Strategic Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
- What is the escape velocity Vesc of a 1.4?⊙ neutron star if its radius is 12 km? Express your answer as a multiple of the speed of light (i.e., compute Vesc/c, where c= 2.9979 x 105 km/s). [Hint: you will need to recall the formula for escape speed from the surface of an object. This was discussed when we covered planetary atmospheres.]arrow_forwardA supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.]arrow_forwardProblem 2: Black hole – the ultimate blackbody A black hole emits blackbody radiation called Hawking radiation. A black hole with mass M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of hc³/167²KGM. a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole. b) Calculate the total power radiated by a one-solar mass black hole. c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say "evaporates". Derive a differential equation for the mass as a function of time, and solve to obtain an expression for the lifetime of a black hole in terms of its mass.arrow_forward
- Models of the first star-forming clouds indicate that they had a temperature of roughly 150 K and a particle density of roughly 400,000 particles per cubic centimeter at the time they started trapping their internal thermal energy. ▼ Part A Estimate the mass at which thermal pressure balances gravity for these values of pressure and temperature. Express your answer in kilograms. —| ΑΣΦ Mcloud Submit Part B = Mcloud How does that mass compare with the Sun's mass? Express your answer in solar masses. Submit Request Answer = ΤΙ ΑΣΦ Request Answer ? ? kg MSun Reviewarrow_forwardA star with mass m, period Ti = 30 days, and radius ri = 1E4 km collapses into a neutron star (Links to an external site.) with a radius of rf = 3 km. Our goal will be to determine the period Tf of the neutron star. Useful formulae: Li=Lf; L=Iω; ω=2πf=2π/T; Isphere=2/5mr^2. 1.How much angular momentum Li does the star have before it collapses? 2. What is the rotation rate ωi of the star before collapsing? 3. Suppose we model the star as a solid sphere of radius ri with moment of inertia 2/5mri2 (a good assumption). What does our description of Li read now? 4.How much angular momentum Lf does the star have after it collapses? 5. What is the rotation rate ωf of the star after collapsing? 6.The new object, a neutron star, is also shaped like a sphere. What does Lf read? Group of answer choices 7.Assuming angular momentum is conserved during collapse (also a good assumption), what is our prediction for the period of the neutron star, Tf? 8. What is Tf in units of days? 9. What…arrow_forwardPlease help me with question C and D. thanks.arrow_forward
- A supernova's energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun's current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein's formula E = mc? calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; Week 5 slide 4; mass of earth = 6x1024kg; c = 3x10®m/s. Your answer should be 200-300 Earth masses.]arrow_forwardAssume that the mass of the core of a star that just went Supernova type II is $2.5 \mathrm{M}_{\odot}$ before and after the collapse, while the Radius changes from $10^3 \mathrm{~km}$, before the collapse, to 12 km , after the collapse respectively.(a) What is the change in potential energy of the core between the two stages before and after the collapse?(b) Knowing that the luminosity of the Sun is $4 \times 10^{26} \mathrm{~W}$ how many years would it take the Sun to release the same amount of energy?arrow_forwardIn Exercise 12.4 of your book, University Physics 15th edition (see End of the Chapter 12 section), what is the answer for sub-item (b) if the radius of the neutron star is 44.527 km? (express your answer in the proper SI unit and without scientific notation).arrow_forward
- planetary nebuls white dwarf 7. If a car was on the highway and was trying to pass another car and went from a speed of 60 m/s to 75 m/s in 3 seconds, what was the acceleration of tha car? (1 point) O 15 m/s2 O-3 m/s2 O -15 m/s? O 5 m/s2 O 3 m/s2 zs/w S- O 8. What is thearrow_forwardWhat is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?arrow_forwardDo it asaparrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax