Concept explainers
To get an idea of how empty deep spam is on the average, perform the following calculations:
(a) Find the volume our Sun would occupy if it had an average density equal to the critical density of thought necessary to halt the expansion of the universe.
(b) Find the radius of a sphere of this volume in light years.
(c) What would this radius be if the density were that of luminous matter, which is approximately 5% that of the critical density?
(d) Compare the radius found in part (c) with me 4-ly average separation of stars in the aims of the Milky Way.
Want to see the full answer?
Check out a sample textbook solutionChapter 34 Solutions
College Physics
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Microbiology: An Introduction
College Physics: A Strategic Approach (3rd Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
Biology: Life on Earth (11th Edition)
Microbiology with Diseases by Body System (5th Edition)
- When two galaxies collide, the stars do not generally run into each other, but the gas clouds do collide, triggering a burst of new star formation. a) Estimate the probability that our Sun would collide with another star in the Andromeda galaxy if a collision between the Milky Way and Andromeda happened. Assume that each galaxy has 100 billion stars exactly like the Sun, spread evenly over a circular disk with a radius of 100,000 light ears. (Hint: first calculate the total area of 100 billion circles with the radius of the Sun and then compare that total area to the area of the Galactic disk.) b) Estimate the probability of a collision between a gas cloud in our galaxy and one in the Andromeda galaxy. To simplify the problem, assume that each galaxy has 100,000 clouds of warm hydrogen gas, each with a radius of 300 light-years, spread evenly over this same disk. Use the same method as part a.arrow_forwardThe visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.arrow_forwardThe Friedmann equation in a matter-dominated universe with curvature is given by 87G -pR² – k , 3 where R is the scale factor, p is the matter densi, and k is a positive constant. Demonstrate that the parametric solution 4G po 4тG Po R(0) (1 – cos 0) 3 k and t( (e – sin 0) 3 k3/2 solves this equation, where 0 is a variable that runs from 0 to 27 and the present-day scale factor is set to Ro = 1. %3Darrow_forward
- a)Define the term “standard candle” as used in cosmology. b)The flux is defined asf(Dlum) = L/4πD^2lumwhere L is the absolute luminosity and Dlum is the distance to the radiation source (youmay assume z ≪ 1).Assume that we have measured the flux to be f = 7.234 10^−23 Wm^−2 and the absoluteluminosity is given by L = 3.828 x10^26W. Calculate the luminosity distance D lum to the objectin Mpc.arrow_forwardPlease answer all questions.arrow_forwardPlease answer within 90 minutes.arrow_forward
- Suppose the Universe is dominated by a strange substance with an equation of state w = -0.7. This substance fills the Universe in a uniform way, and is the only dynamically important constituent. Suppose further that in some time interval the Universe doubles in (linear) size, i.e. the scale factor doubles. By what factor has the energy density of this substance changed during this time interval, i.e., what is εfinal/εinitial? The energy density substance dilutes in proportion to a to some power p, i.e. ε(a) ∝ aparrow_forwardDistances to very remote galaxies are estimated based on their apparent type, which indicate the number of stars in thegalaxy, and their measured brightness. Explain how the measured brightness would vary with distance. Would there be anycorrection necessary to compensate for the red shift of the galaxy (all distant galaxies have significant red shifts)? Discusspossible causes of uncertainties in these measurementsarrow_forwardUse Wien’s law to answer the following questions: (a) The cosmic background radiation peaks in intensity at a wavelength of 1.1 mm. To what temperature does this correspond? (b) About 379 000 y after the big bang, the universe became transparent to electromagnetic radiation. Its temperature then was 2970 K.What was the wavelength at which the background radiation was then most intense?arrow_forward
- The energy density ϵ in radiation is related to its temperature by ϵ=αT4. Compute the temperature when the Universe was 0.1 second old, using the Friedmann equation and its radiation-dominated solution a(t)∝t1/2.arrow_forwarda) Define the term “standard candle” as used in cosmology b). The flux is defined as f(Dlum) = L /4πD2lum , where L is the absolute luminosity and Dlum is the distance to the radiation source (you may assume z ≪ 1). Assume that we have measured the flux to be f = 7.234 10−23Wm−2 and the absolute luminosity is given by L = 3.828 1026W. Calculate the luminosity distance Dlum to the object in Mpc. c). Calculate the distance modulus µ for the object of the previous subquestion. Show that the distance modulus µ can be written as given in imagearrow_forwardThe photons that make up the cosmic microwave background were emitted about 380,000 years after the Big Bang. Today, 13.8billion years after the Big Bang, the wavelengths of these photons have been stretched by a factor of about 1100 since they were emitted because lengths in the expanding universe have increased by that same factor of about 1100. Consider a cubical region of empty space in today’s universe 1.00 m on a side, with a volume of 1.00 m3. What was the length s0 of each side and the volume V0 of this same cubical region 380,000 years after the Big Bang? s0 = ? m V0 = ? m^3 Today the average density of ordinary matter in the universe is about 2.4×10−27 kg/m3. What was the average density ?(rho)0 of ordinary matter at the time that the photons in the cosmic microwave background radiation were emitted? (rho)0 = ? kg/m^3arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax