Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 70P
You’re investigating an oil spill for your state environmental protection agency. There’s a thin film of oil on water, and you know its refractive index is noil = 1.38. You shine white light vertically on the oil, and use a spectrometer to determine that the most strongly reflected wavelength is 580 nm. Assuming first-order thin-film interference, what do you report for the thickness of the oil slick?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is the following situation impossible? Two narrow slits are separated by 8.00 mm in a piece of metal. A beam of microwaves strikes the metal perpendicularly, passes through the two slits, and then proceeds toward a wall some distance away. You know that the wavelength of the radiationis 1.00 cm ±5%, but you wish to measure it more precisely. Moving a microwave detector along the wall to study the interference pattern, you measure the position of the m = 1 bright fringe, which leads to a successful measurement of the wavelength of the radiation.
Anti-reflective coatings on camera lenses and glasses work by utilizing thin-film interference to greatly reduce reflected light. (Ever wondered why your glasses have a bluish/magenta tint when they reflect light? It's from that thin film!)We wish to coat flat glass (n=1.50) with a transparent material (n=1.25), so that reflection of light at wavelength 402.375nm is eliminated by interference. What is the minimum thickness (nm) of the coating that will work for our purposes?
A monochromatic light with 536nm pass through a slit that is 0.240 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum is 4.00 *10-5 W/m2. What is the intensity at a point on the screen the corresponding to θ=1.20˚?
Chapter 32 Solutions
Essential University Physics (3rd Edition)
Ch. 32.1 - Laser light is split into two beams, one of which...Ch. 32.2 - If you increase the slit separation in a two-slit...Ch. 32.4 - If you photographed the soap film in Fig. 32.14...Ch. 32.5 - A classmate down the hall is playing obnoxiously...Ch. 32.6 - You're a biologist trying to resolve details of...Ch. 32 - A prism bends blue light more than red. Is the...Ch. 32 - Prob. 2FTDCh. 32 - Prob. 3FTDCh. 32 - Why don't you see interference effects between the...Ch. 32 - You can hear around corners, but you cant see...
Ch. 32 - In deriving the intensity in double-slit...Ch. 32 - The primary maxima in multiple-slit interference...Ch. 32 - Prob. 8FTDCh. 32 - Sketch roughly the diffraction pattern you would...Ch. 32 - A double-slit system is used to measure the...Ch. 32 - A double-slit experiment with d = 0.025mm and L =...Ch. 32 - A double-slit experiment has slit spacing 0.12 mm....Ch. 32 - The interference pattern from two slits separated...Ch. 32 - The 546-nm green line of gaseous mercury falls on...Ch. 32 - In a five-slit system, how many minima lie between...Ch. 32 - In a three-slit system, the first minimum occurs...Ch. 32 - A five-slit system with 7.5-m slit spacing is...Ch. 32 - Green light at 520 nm is diffracted by a grating...Ch. 32 - Light is incident normally on a grating with...Ch. 32 - Prob. 20ECh. 32 - Find the minimum thickness of a soap film (n =...Ch. 32 - Light of unknown wavelength shines on a precisely...Ch. 32 - Monochromatic light shines on a glass wedge with...Ch. 32 - White light shines on a 75.0-nm-thick sliver of...Ch. 32 - For the soap film described in Conceptual Example...Ch. 32 - For what ratio of slit width to wavelength will...Ch. 32 - Light with wavelength 633 nm is incident on a...Ch. 32 - Youre inside a metal building that blocks radio...Ch. 32 - Find the intensity as a fraction of the central...Ch. 32 - Prob. 30ECh. 32 - Find the minimum telescope aperture that could...Ch. 32 - Whats the longest wavelength of light you could...Ch. 32 - In bright light, the human eyes pupil diameter is...Ch. 32 - Find the angular position of the second-order...Ch. 32 - A double-slit experiment has slit spacing 0.035nm,...Ch. 32 - For a double-slit system with slit spacing 0.0525...Ch. 32 - A screen 1.0 m wide is 2.0 m from a pair of slits...Ch. 32 - A tube of glowing gas emits light at 550 nm and...Ch. 32 - On the screen of a multiple-slit system, the...Ch. 32 - Youre designing a spectrometer whose...Ch. 32 - For visible light with wavelengths from 400 nm to...Ch. 32 - Find the total number of lines in a 2.5-cm-wide...Ch. 32 - What order is necessary to resolve 647.98-nm and...Ch. 32 - A thin film of toluene (n = 1.49) floats on water....Ch. 32 - NASA asks you to assess the feasibility of a...Ch. 32 - In the second-order spectrum from a diffraction...Ch. 32 - Prob. 47PCh. 32 - As a soap bubble with n = 1.333 evaporates and...Ch. 32 - An oil film with refractive index 1.25 floats on...Ch. 32 - The table below lists the angular positions of the...Ch. 32 - Two perfectly flat glass plates are separated at...Ch. 32 - An air wedge like that of Fig. 32.28 shows N...Ch. 32 - A Michelson interferometer uses light from glowing...Ch. 32 - Find the wavelength of light used in a Michelson...Ch. 32 - One arm of a Michelson interferometer is 42.5 cm...Ch. 32 - Your stereo is in a dead spot caused by direct...Ch. 32 - A proposed star wars antimissile laser is to focus...Ch. 32 - Suppose one of the 10-m-diameter Keck Telescopes...Ch. 32 - A camera has an f/1.4 lens, meaning the ratio of...Ch. 32 - The CIA wants your help identifying individual...Ch. 32 - While driving at night, your eyes irises dilate to...Ch. 32 - Under the best conditions, atmospheric turbulence...Ch. 32 - Prob. 63PCh. 32 - An air wedge like that of Fig. 32.28 displays...Ch. 32 - A thin-walled glass tube of length L containing a...Ch. 32 - Light is incident on a diffraction grating at...Ch. 32 - An arrangement known as Lloyds mirror (Fig. 32.29)...Ch. 32 - The intensity of the single-slit diffraction...Ch. 32 - Youre on an international panel charged with...Ch. 32 - Youre investigating an oil spill for your state...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If a point source is located directly above a...Ch. 32 - If a point source is located on a line at 45 to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
At the aquarium where you work, a fish has gone missing in a 10-m-deep. 11-m-diameter cylindrical tank. You shi...
Essential University Physics: Volume 2 (3rd Edition)
Write each number in decimal form.
25. 7.68 × 10–1
Applied Physics (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
The silicates are the largest mineral group because silicon and oxygen are a the hardest elements on Earths sur...
Conceptual Integrated Science
Discuss the threat that future impacts may pose to us and our planet, and how we know that the threat is real.
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To save money on making military aircraft invisible to radar, an inventor decides to coat them with a nonreflective material having an index of refraction of 1.20, which is between that of air and the surface of the plane. This, he reasons, should be much cheaper than designing Stealth bombers. (a) What thickness should the coating be to inhibit the reflection of 4.00-cm wavelength radar? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardA monochromatic beam of light of wavelength 500 nm illuminates a double slit having a slit separation of 2.00 105 m. What is the angle of the second-order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad (c) 0.100 rad (d) 0.250 rad (e) 0.010 0 radarrow_forwardRed light of wavelength of 700 nm falls on a double slit separated by 400 nm. (a) At what angle is the first-order maximum in the diffraction pattern? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- A Fraunhofer diffraction pattern is produced on a screen located 1.00 m from a single slit. If a light source of wavelength 5.00 107 m is used and the distance from the center of the central bright fringe to the first dark fringe is 5.00 103 m, what is the slit width? (a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm (e) 0.005 00 mmarrow_forwardIn Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardConsider a single-slit diffraction pattern for =589 nm, projected on a screen that is 1.00 m from a slit of width 0.25 mm. How far from the center of the pattern are the centers of the first and second dark fringes?arrow_forward
- A laboratory dish, 20 cm in diameter, is half filled with water. One at a time, 0.48 µL drops of oil from a micropipette are dropped onto the surface of the water, where they spread out into a uniform thin film. After the first drop is added, the intensity of 610 nm light reflected from the surface is very low. As more drops are added, the reflected intensity increases, then decreases again to a minimum after a total of 13 drops have been added. Part A What is the index of refraction of the oil? Hνα ΑΣφ ? Noil = Submit Request Answerarrow_forwardNormally incident light of wavelength 495 nm reflects off an oil ( n = 1.43) layer on water (n = 1.33). What is the smallest nonzero thickness of that will maximally reflect the light? What is the smallest nonzero thickness of that will minimally reflect the light?arrow_forwardThe coherence length of an ordinary white light source can be increased if we place a color filter in front of the source, so that the light that passes through the filter is somewhat monochromatic. The minimum wavelength of the emerging light is 546 nm. What is the maximum wavelength in order for the coherence length to be 0.1090 mm?arrow_forward
- When coherent electromagnetic waves with wavelength λ = 120 µm are incident on a single slit of width a, the width of the central maximum on a tall screen 1.50 m from the slit is 90.0 cm. For the same slit and screen, for what wavelength of the incident waves is the width of the central maximum 180.0 cm, double the value when λ = 120 µm?arrow_forwardTwo sources are emitting coherent, monochromatic EM waves with a wavelength of 2 cm in air. Source 1 is embedded in a material with index of refraction n1 = 1.5. The distance between source 1 and the edge of the material is 6 cm. You can assume nair = 1. At the point marked with an X, which is 9 cm from source 2 and 3 cm from the edge of the material that source 1 is embedded inside, what kind of interference will you find between EM waves from the two sources? Group of answer choices Destructive Constructivearrow_forwardA laboratory dish, 20 cm in diameter, is half filled with water. One at a time, 0.50 μL drops of oil from a micropipette are dropped onto the surface of the water, where they spread out into a uniform thin film. After the first drop is added, the intensity of 600 nm light reflected from the surface is very low.As more drops are added, the reflected intensity increases, then decreases again to a minimum after a total of 13 drops have been added. What is the index of refraction of the oil?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY