Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 63P
To determine
Whether the rep who claims the expensive microscope to resolve half size of the one resolvable by the optical microscope is correct. Whether the expensive uv microscope can resolve rhinoviruse.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A crystal sample of bacteriorhodopsin, a light-sensitive protein found in halobacteria that responds to light energy, has crystal planes separated by 0.20 nm. If a beam of 12keV x rays illuminates a sample, what angles will give diffraction maxima of the first, second and third order?
Express your answers in degrees separated by commas in ascending order.
First-order Bragg scattering from a certain crystal occurs at an angle of incidence of
63.8°; see figure below. The wavelength of the x-rays is 0.261nm. Assuming that the
scattering is from the dashed planes shown, find the unit cell size ao.
63.8°
X rays
You are a sonographer, and you want to use the best available single-elementtransducer to image the fetus head which is about 10 cm away from themother’s skin. The optimal transducer diameter to use at frequency 6.15 kHz is:a. 5 mmb. 7 mmc. 10 mmd. 15 mm
Chapter 32 Solutions
Essential University Physics (3rd Edition)
Ch. 32.1 - Laser light is split into two beams, one of which...Ch. 32.2 - If you increase the slit separation in a two-slit...Ch. 32.4 - If you photographed the soap film in Fig. 32.14...Ch. 32.5 - A classmate down the hall is playing obnoxiously...Ch. 32.6 - You're a biologist trying to resolve details of...Ch. 32 - A prism bends blue light more than red. Is the...Ch. 32 - Prob. 2FTDCh. 32 - Prob. 3FTDCh. 32 - Why don't you see interference effects between the...Ch. 32 - You can hear around corners, but you cant see...
Ch. 32 - In deriving the intensity in double-slit...Ch. 32 - The primary maxima in multiple-slit interference...Ch. 32 - Prob. 8FTDCh. 32 - Sketch roughly the diffraction pattern you would...Ch. 32 - A double-slit system is used to measure the...Ch. 32 - A double-slit experiment with d = 0.025mm and L =...Ch. 32 - A double-slit experiment has slit spacing 0.12 mm....Ch. 32 - The interference pattern from two slits separated...Ch. 32 - The 546-nm green line of gaseous mercury falls on...Ch. 32 - In a five-slit system, how many minima lie between...Ch. 32 - In a three-slit system, the first minimum occurs...Ch. 32 - A five-slit system with 7.5-m slit spacing is...Ch. 32 - Green light at 520 nm is diffracted by a grating...Ch. 32 - Light is incident normally on a grating with...Ch. 32 - Prob. 20ECh. 32 - Find the minimum thickness of a soap film (n =...Ch. 32 - Light of unknown wavelength shines on a precisely...Ch. 32 - Monochromatic light shines on a glass wedge with...Ch. 32 - White light shines on a 75.0-nm-thick sliver of...Ch. 32 - For the soap film described in Conceptual Example...Ch. 32 - For what ratio of slit width to wavelength will...Ch. 32 - Light with wavelength 633 nm is incident on a...Ch. 32 - Youre inside a metal building that blocks radio...Ch. 32 - Find the intensity as a fraction of the central...Ch. 32 - Prob. 30ECh. 32 - Find the minimum telescope aperture that could...Ch. 32 - Whats the longest wavelength of light you could...Ch. 32 - In bright light, the human eyes pupil diameter is...Ch. 32 - Find the angular position of the second-order...Ch. 32 - A double-slit experiment has slit spacing 0.035nm,...Ch. 32 - For a double-slit system with slit spacing 0.0525...Ch. 32 - A screen 1.0 m wide is 2.0 m from a pair of slits...Ch. 32 - A tube of glowing gas emits light at 550 nm and...Ch. 32 - On the screen of a multiple-slit system, the...Ch. 32 - Youre designing a spectrometer whose...Ch. 32 - For visible light with wavelengths from 400 nm to...Ch. 32 - Find the total number of lines in a 2.5-cm-wide...Ch. 32 - What order is necessary to resolve 647.98-nm and...Ch. 32 - A thin film of toluene (n = 1.49) floats on water....Ch. 32 - NASA asks you to assess the feasibility of a...Ch. 32 - In the second-order spectrum from a diffraction...Ch. 32 - Prob. 47PCh. 32 - As a soap bubble with n = 1.333 evaporates and...Ch. 32 - An oil film with refractive index 1.25 floats on...Ch. 32 - The table below lists the angular positions of the...Ch. 32 - Two perfectly flat glass plates are separated at...Ch. 32 - An air wedge like that of Fig. 32.28 shows N...Ch. 32 - A Michelson interferometer uses light from glowing...Ch. 32 - Find the wavelength of light used in a Michelson...Ch. 32 - One arm of a Michelson interferometer is 42.5 cm...Ch. 32 - Your stereo is in a dead spot caused by direct...Ch. 32 - A proposed star wars antimissile laser is to focus...Ch. 32 - Suppose one of the 10-m-diameter Keck Telescopes...Ch. 32 - A camera has an f/1.4 lens, meaning the ratio of...Ch. 32 - The CIA wants your help identifying individual...Ch. 32 - While driving at night, your eyes irises dilate to...Ch. 32 - Under the best conditions, atmospheric turbulence...Ch. 32 - Prob. 63PCh. 32 - An air wedge like that of Fig. 32.28 displays...Ch. 32 - A thin-walled glass tube of length L containing a...Ch. 32 - Light is incident on a diffraction grating at...Ch. 32 - An arrangement known as Lloyds mirror (Fig. 32.29)...Ch. 32 - The intensity of the single-slit diffraction...Ch. 32 - Youre on an international panel charged with...Ch. 32 - Youre investigating an oil spill for your state...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If a point source is located directly above a...Ch. 32 - If a point source is located on a line at 45 to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- lamp with 2 = 589 nm? 8.3 (a) How many bits can be stored in an optical storage of A4 paper size (21.5 cm x 27.5 cm) using a laser diode that emits light at HeNe wavelength of 633 nm? (b) If the capacity of a CD-ROM is 650 Mbytes, the A4 paper size optical storage is equivalent to how many CD-ROMS?arrow_forwardThe pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 166 m, the eagle sees them as one unresolved object and dives toward them at a speed of 24 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= i eTextbook and Mediaarrow_forwardA crystal sample of bacteriorhodopsin, a light-sensitive protein found in halobacteria that responds to light energy, has crystal planes separated by 0.20 nm If a beam of 10keV x rays illuminates a sample, what angles will give diffraction maxima of the first, second and third order?arrow_forward
- Monochromatic X-rays are incident on a crystal. The first-order Bragg peak is observed when the angle of incidence is 34.0°. The crystal spacing is known to be 0.347 nm. What is the wavelength of the X rays?arrow_forwardquestion 16arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. If this is done with the Mount Wilson telescope, producing a 2.54 m diameter beam of 613 nm light, what is the minimum angular spread of the beam? Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m?arrow_forward
- . (2.a) What energy or wavelength must they have if X-rays are to be used in diffractionexperiments for the purpose of characterizing crystal structure? Explain.(2.b) Why is Drude theory important for the metals? Explain this question in terms ofthe assumptions of Drude theory.(2.c) What characteristics must be the crystal structure of a solid have in order for opticmodes to exist? You can use schematic drawing in your answers with your explanations.(2.d) Which of the following types of order is present in a crystalline solid? (a) shortrange order (b) long range order or (c) both short- and long-range order?arrow_forwardA telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the Moon. If this is done with the Otto Struve telescope, producing a 2.10 m diameter beam of 613 nm light, what is the minimum angular spread of the beam? minimum angular spread: rad Neglecting atmospheric effects, what is the size of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m? size of spot on the Moon:arrow_forwardIn order to achieve higher levels of X-ray attenuation than observed for biological tissue, elements of higher atomic number (Z) are incorporated into the contrast agent molecule. Lithium iodide (LiI) was among the first water-soluble imaging agents. Compare mass attenuation coefficients for soft tissues and for lithium iodide.arrow_forward
- The Very Large Array (VLA) is a set of 27 radio telescope dishes in Catron and Socorro counties, New Mexico (as shown). The antennas can be moved apart on railroad tracks, and their combined signals give the resolvingpower of a synthetic aperture 36.0 km in diameter. (a) If the detectors are tuned to a frequency of 1.40 GHz, what is the angular resolution of the VLA? (b) Clouds of interstellar hydrogen radiate at the frequency used in part (a). What must be the separation distance of two clouds at the center of the galaxy, 26 000 light-years away, if they are to be resolved? (c) What If? As the telescope looks up, a circling hawk looks down. Assume the hawk is most sensitive to green light having a wavelength of 500 nm and has apupil of diameter 12.0 mm. Find the angular resolution of the hawk’s eye. (d) A mouse is on the ground 30.0 m below. By what distance must the mouse’s whiskers be separated if the hawk can resolve them?arrow_forwardThe first-order Bragg angle for a certain crystal is 12.1°. What is the second-order angle?arrow_forwardRadio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning