Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 32, Problem 13E
The interference pattern from two slits separated by 0.37 mm has bright fringes with angular spacing 0.065°. Find the light’s wave-length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
By please don't use Chatgpt will upvote and give handwritten solution
Chapter 32 Solutions
Essential University Physics (3rd Edition)
Ch. 32.1 - Laser light is split into two beams, one of which...Ch. 32.2 - If you increase the slit separation in a two-slit...Ch. 32.4 - If you photographed the soap film in Fig. 32.14...Ch. 32.5 - A classmate down the hall is playing obnoxiously...Ch. 32.6 - You're a biologist trying to resolve details of...Ch. 32 - A prism bends blue light more than red. Is the...Ch. 32 - Prob. 2FTDCh. 32 - Prob. 3FTDCh. 32 - Why don't you see interference effects between the...Ch. 32 - You can hear around corners, but you cant see...
Ch. 32 - In deriving the intensity in double-slit...Ch. 32 - The primary maxima in multiple-slit interference...Ch. 32 - Prob. 8FTDCh. 32 - Sketch roughly the diffraction pattern you would...Ch. 32 - A double-slit system is used to measure the...Ch. 32 - A double-slit experiment with d = 0.025mm and L =...Ch. 32 - A double-slit experiment has slit spacing 0.12 mm....Ch. 32 - The interference pattern from two slits separated...Ch. 32 - The 546-nm green line of gaseous mercury falls on...Ch. 32 - In a five-slit system, how many minima lie between...Ch. 32 - In a three-slit system, the first minimum occurs...Ch. 32 - A five-slit system with 7.5-m slit spacing is...Ch. 32 - Green light at 520 nm is diffracted by a grating...Ch. 32 - Light is incident normally on a grating with...Ch. 32 - Prob. 20ECh. 32 - Find the minimum thickness of a soap film (n =...Ch. 32 - Light of unknown wavelength shines on a precisely...Ch. 32 - Monochromatic light shines on a glass wedge with...Ch. 32 - White light shines on a 75.0-nm-thick sliver of...Ch. 32 - For the soap film described in Conceptual Example...Ch. 32 - For what ratio of slit width to wavelength will...Ch. 32 - Light with wavelength 633 nm is incident on a...Ch. 32 - Youre inside a metal building that blocks radio...Ch. 32 - Find the intensity as a fraction of the central...Ch. 32 - Prob. 30ECh. 32 - Find the minimum telescope aperture that could...Ch. 32 - Whats the longest wavelength of light you could...Ch. 32 - In bright light, the human eyes pupil diameter is...Ch. 32 - Find the angular position of the second-order...Ch. 32 - A double-slit experiment has slit spacing 0.035nm,...Ch. 32 - For a double-slit system with slit spacing 0.0525...Ch. 32 - A screen 1.0 m wide is 2.0 m from a pair of slits...Ch. 32 - A tube of glowing gas emits light at 550 nm and...Ch. 32 - On the screen of a multiple-slit system, the...Ch. 32 - Youre designing a spectrometer whose...Ch. 32 - For visible light with wavelengths from 400 nm to...Ch. 32 - Find the total number of lines in a 2.5-cm-wide...Ch. 32 - What order is necessary to resolve 647.98-nm and...Ch. 32 - A thin film of toluene (n = 1.49) floats on water....Ch. 32 - NASA asks you to assess the feasibility of a...Ch. 32 - In the second-order spectrum from a diffraction...Ch. 32 - Prob. 47PCh. 32 - As a soap bubble with n = 1.333 evaporates and...Ch. 32 - An oil film with refractive index 1.25 floats on...Ch. 32 - The table below lists the angular positions of the...Ch. 32 - Two perfectly flat glass plates are separated at...Ch. 32 - An air wedge like that of Fig. 32.28 shows N...Ch. 32 - A Michelson interferometer uses light from glowing...Ch. 32 - Find the wavelength of light used in a Michelson...Ch. 32 - One arm of a Michelson interferometer is 42.5 cm...Ch. 32 - Your stereo is in a dead spot caused by direct...Ch. 32 - A proposed star wars antimissile laser is to focus...Ch. 32 - Suppose one of the 10-m-diameter Keck Telescopes...Ch. 32 - A camera has an f/1.4 lens, meaning the ratio of...Ch. 32 - The CIA wants your help identifying individual...Ch. 32 - While driving at night, your eyes irises dilate to...Ch. 32 - Under the best conditions, atmospheric turbulence...Ch. 32 - Prob. 63PCh. 32 - An air wedge like that of Fig. 32.28 displays...Ch. 32 - A thin-walled glass tube of length L containing a...Ch. 32 - Light is incident on a diffraction grating at...Ch. 32 - An arrangement known as Lloyds mirror (Fig. 32.29)...Ch. 32 - The intensity of the single-slit diffraction...Ch. 32 - Youre on an international panel charged with...Ch. 32 - Youre investigating an oil spill for your state...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If the separation of two telescopes comprising an...Ch. 32 - If a point source is located directly above a...Ch. 32 - If a point source is located on a line at 45 to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
Choose the best answer to etch of the following. Explain your reasoning. Scientists estimate the central temper...
Cosmic Perspective Fundamentals
Explain why it is too narrow to define the biodiversity crisis as simply a loss of species.
Campbell Biology (11th Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forward
- Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forwardPoint charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forward
- A conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forwardA person is making pancakes and tries to flip one in the pan. The person is holding the pan a distance y0 = 1.10 m above the ground when they launch the pancake. The pancake just barely touches the ceiling, which is at a height y = 2.47 m above the ground. A) What must be the initial velocity of the pancake to reach that height? B) This person, shocked that they almost hit the ceiling, does not catch it on the way down and the pancake hits the floor. Assuming up as the positive direction, what is the velocity of the pancake when it hits the floor, ruining breakfast and this person’s day?arrow_forwardOne of Spider-Man’s less talked about powers is that he can jump really high. In the comics Spider-Man can jump upwards 3 stories. A) If Spider-Man leaves the ground at 14.3 m/s, how high can he get? y= B) If Spider-Man jumps directly upwards with the initial velocity used above and then returns to the ground, what total amount of time does he spend airborn? t=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY