Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 9RQ
If the state equations are a system of first-order differential equations whose solution yields the state variables, then the output equation performs what function?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use MATLAB to obtain a state model for the following equations; obtain the expressions for
the matrices A, B, C, and D. In both cases, the input is f(t); the output: is y.
a. 5d³yd²y
+7.
b.
dy
+3
dt³ dt² dt
Y(s)
5
=
F(s) s² +7s+4
- +6y=f(t)
Mechanics of machines
QUESTION 4
Consider two degree of freedom of coupled pendulum with horizontal rod vibration system
are shown in figure 4.
MA
KG.
oooo
MB
BAW
a
Figure 4
k
d
L
4.1- Determine differential equations of motion in matrix form using The equation of
equation with, and ß as generalized coordinates;
4.2- Develop state-space model.
For the following state-space representation,define the:– State Vector– System Matrix– Feedforward Matrix– Input Matrix & Input Vector– Output Matrix & Output Vector
Chapter 3 Solutions
Control Systems Engineering
Ch. 3 - Prob. 1RQCh. 3 - State an advantage of the transfer function...Ch. 3 - Define state variables.Ch. 3 - Define state.Ch. 3 - Define state vector.Ch. 3 - Define state space.Ch. 3 - What is required to represent a system in state...Ch. 3 - 8. An eighth-order system would be represented in...Ch. 3 - If the state equations are a system of first-order...Ch. 3 - Prob. 10RQ
Ch. 3 - What factors influence the choice of state...Ch. 3 - What is a convenient choice of state variables for...Ch. 3 - If an electrical network has three energy-storage...Ch. 3 - Prob. 14RQCh. 3 - Prob. 1PCh. 3 - Represent the electrical network shown in Figure...Ch. 3 - Prob. 3PCh. 3 - Represent the system shown in Figure P3.4 in state...Ch. 3 - Represent the rotational mechanical system shown...Ch. 3 - Represent the system shown in Figure P3.7 in state...Ch. 3 - 8. Show that the system of Figure 3.7 in the text...Ch. 3 - Find the state-space representation in...Ch. 3 - MATLAB ML 10. Repeat Problem 9 using MATLAB....Ch. 3 - For each system shown in Figure P3.9, write the...Ch. 3 - MATLAB ML
12. Repeat Problem 11 using MATLAB....Ch. 3 - 13. Represent the following transfer function in...Ch. 3 - Find the transfer function G(s) = Y(s)/R(s) for...Ch. 3 - MATLAB ML
15. Use MATLAB to find the transfer...Ch. 3 - 17. A missile in flight, as shown in Figure P3.10,...Ch. 3 - Given the dc servomotor and load shown in Figure...Ch. 3 - Prob. 20PCh. 3 - Prob. 23PCh. 3 - Experiments to identify precision grip dynamics...Ch. 3 - State-space representations are, in general, not...Ch. 3 - Figure P3.16 shows a schematic description of the...Ch. 3 - Prob. 28PCh. 3 - A single-pole oil cylinder valve contains a spool...Ch. 3 - Figure P3.17 shows a free-body diagram of an...Ch. 3 - 33. Parabolic trough collector. A transfer...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a) Determine the state space representation for the translational mechanical system shown in Figure Q4(a), where force, f(t) and displacement, x(t) are the input and output of the system respectively. Use these state variables in your answer. oooo K M -x(1) -ƒ(1)arrow_forwardi need the answer quicklyarrow_forward1. Reduce the following differential equation to the state space equation form. a. y" (t) + 3y' (t) + 2y (t) = u(t) b. y" (t) = u(t) — b₁y' (t) — boy (t) c. 4y" (t) cos (t) y' (t) + sin (t) y (t) = u(t)arrow_forward
- Develop a state space model for the transfer function s2 + 5s + 4 G1 (s) = s2 +7s + 12 What is the dimension of the minimal state space realization?arrow_forwardExample For the system shown, the equations of motion are given by m₁x₁ + cx₁ + kx₁ Cx₂ = 0 m₂X₂ + CX₂ cx1 = F Use state space method to reduce the equation of motion into a system of 1st order differential equations. www m₁ m₂ farrow_forward2. Consider the state equation x1 1 20 x1 d x2 = 0 10 x2 dt x3 001 x3 where x1, x2 and 23 are state variables. Please answer the following questions. (a) The state matrix (4) 1 20 A = 0 1 0 (5) 0 0 1 has three-fold eigenvalues with \₁ = = A2 A3 1. Find all independent eigenvectors corresponding to this eigenvalue. (b) Find the modal matrix M associated with the state matrix A. Does M-1 AM lead to a Jordan form or not? Hint: The modal matrix M turns out to be a diagonal matrix. For a diagonal matrix, its inverse is given by a 00 0b0 -1 1/a 0 0 = 0 1/b 0 00 с 0 0 1/c 1 (6) (c) Find the state transition matrix (t). (d) Determine the stability of the system. Please justify your answer.arrow_forward
- T:06)arrow_forward1) a) Derive the mathematical model for the system shown below. b) Find a state variable model (matrix form) for the system. b) Determine state matrix, input matrix, and output matrix, when f (t) is defined as the input and X2 is defined as output for the system. (Here, both of the X1 and x2 , are time-dependent functions) » f(t) X1 X2 3,000 N 1,000 N 4,000 30 kg 20 kg 200 유 N.sarrow_forwardConsider the following mechanical system: k m +f b d²y(t) +b- dy(t) + ky(t) = f (t) m %3D dt? dt Obtain the state space model of the system with input f (t) and output y(t). Calculate the system matrices for m = 1, k = 1 and b = 2. Check the stability by using the second method of Lyapunov. 3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license