Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 10P
MATLAB ML
10. Repeat Problem 9 using MATLAB. [Section: 3.5]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am trying to convert orbital elements to the state vector in MATLAB. My orbital elements are as follows
a = 6731;
ecc = 0.01;
inc = 142.461;
raan = 155.9325;
argp = 321.0439;
f = 145.8291;
After transforming them I get :
x = 3898.6;
y = 3898.6;
z = 3957;
vx = 5.9771;
vy = -4.5575;
vz = -1.3245;
I am wondering if the transformation is done correctly. Because x, y, and z are defined from earth's radius to the spacecraft, right? If that is the case then x, y, and z should have values greater than the earth's radius. Is my assumption correct?
Answer all questions below showing revelent calculations and working with explanation where necessary.
1.Create a mathematical model for the system shown.
2.Develop a transfer function for 0(s)/Qi(s), state the constants that you have used in your transfer function. [Hint: You would also need to derive Q(s)/Qi(s) to predict a theoretical value for the increase in rotational speed ] [Note: Omega, Q=Angular speed]
3. With the use of theoretical values, determine the theoretical increase in rotational speed expected for the water wheel when the inflow is increased by a step. This should be repeated for three different step input values. Show calculations and working throughout.
O 1::09
O [Template] Ho...
->
Homework
For the system shown in figure below, Find the range of K
for stable system.
R
K(s + 2)
C
s(s +5)(s² + 2s + 5)
II
Chapter 3 Solutions
Control Systems Engineering
Ch. 3 - Prob. 1RQCh. 3 - State an advantage of the transfer function...Ch. 3 - Define state variables.Ch. 3 - Define state.Ch. 3 - Define state vector.Ch. 3 - Define state space.Ch. 3 - What is required to represent a system in state...Ch. 3 - 8. An eighth-order system would be represented in...Ch. 3 - If the state equations are a system of first-order...Ch. 3 - Prob. 10RQ
Ch. 3 - What factors influence the choice of state...Ch. 3 - What is a convenient choice of state variables for...Ch. 3 - If an electrical network has three energy-storage...Ch. 3 - Prob. 14RQCh. 3 - Prob. 1PCh. 3 - Represent the electrical network shown in Figure...Ch. 3 - Prob. 3PCh. 3 - Represent the system shown in Figure P3.4 in state...Ch. 3 - Represent the rotational mechanical system shown...Ch. 3 - Represent the system shown in Figure P3.7 in state...Ch. 3 - 8. Show that the system of Figure 3.7 in the text...Ch. 3 - Find the state-space representation in...Ch. 3 - MATLAB ML 10. Repeat Problem 9 using MATLAB....Ch. 3 - For each system shown in Figure P3.9, write the...Ch. 3 - MATLAB ML
12. Repeat Problem 11 using MATLAB....Ch. 3 - 13. Represent the following transfer function in...Ch. 3 - Find the transfer function G(s) = Y(s)/R(s) for...Ch. 3 - MATLAB ML
15. Use MATLAB to find the transfer...Ch. 3 - 17. A missile in flight, as shown in Figure P3.10,...Ch. 3 - Given the dc servomotor and load shown in Figure...Ch. 3 - Prob. 20PCh. 3 - Prob. 23PCh. 3 - Experiments to identify precision grip dynamics...Ch. 3 - State-space representations are, in general, not...Ch. 3 - Figure P3.16 shows a schematic description of the...Ch. 3 - Prob. 28PCh. 3 - A single-pole oil cylinder valve contains a spool...Ch. 3 - Figure P3.17 shows a free-body diagram of an...Ch. 3 - 33. Parabolic trough collector. A transfer...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- R$ RL V (t) V(t) L Figure 7: A tuning circuit for radio 5. Figure 7 shows a tuning circuit used in radio. Derive the state equation using the linear graph approach. Also let the output variable be the voltage vo(t). Derive the output equation.arrow_forwardPlease help me solve this questions.arrow_forwardExplain the state space functionarrow_forward
- The state transmission matrix of the system whose state-space [3²₁] = [0²2 J]+[]u a. b. C. O 0 cosh at c. Ø(t) = [ a sinh at/a cosh a. ¢(t) = [sinhat cosh at a. Ø(t) = [a cosh at sinh at b. Ø(t) = [a [a cosh at a sinh at sinhat cosh at] sinhat/a] cosh at [/a] sinh at/a] a cosh at sinh at att cosh atarrow_forward3. In this problem, you are going to analyze the dynamics of a rotational mechanical system shown in Figure below (this is also covered in Lecture Notes #3 of M. Mert Ankarali [1]). In this system input the external torque t(t), and output is the angular velocity of the load wL(t). JR WR OR K JL OL WL T DL DR The state-space representation of this system is provided in the Lecture Notes #3 [1]. Find the transfer function of the dynamical system. Find another (minimal) state-space representation for the system.arrow_forwardIf a system, * + 10x + 21x = 4f(t) is converted into a state-space model, what would be the state (A), input (B), and output (C) matrices? [where input = f (t) and output = x(t)] %3D A) A = | [-21 l, B = | and C = [0 1] В -10 1 B) A = 21 ol, B = and C = [1 0] %3D C) A = = Al and C = [1 0] В %3D -21 D) None of the abovearrow_forward
- I need help with my MATLAB code. I am trying to propagte 10 different initial state vectors. In the end, I get 1 state matrix. I need to get 10 different state matrices for the 10 different initial state vectors. How do I store each state matrices seperately in MATLAB? R = 6378.0; %km mu = 398600.4415; %km^3/s^2 r = [7000, 0, 0, 0, 7.5, 0; 7100, 0, 0, 0, 7.6, 0; 7200, 0, 0, 0, 7.4, 0; 7300, 0, 0, 0, 7.3, 0; 7400, 0, 0, 0, 7.2, 0; 7500, 0, 0, 0, 7.1, 0; 7600, 0, 0, 0, 7.0, 0; 7700, 0, 0, 0, 6.9, 0; 7800, 0, 0, 0, 6.8, 0; 7900, 0, 0, 0, 6.7, 0]; % Initialize cell array to store results for each initial state results = cell(size(r, 1), 1); for i = 1:length(r) % Finding Period T_orbit = 2 * pi * sqrt((norm(r(i, :))^3) / mu); time_span = [0, T_orbit]; state_init = r(i, :); % Numerical integration using ODE solver options = odeset('RelTol', 1e-12, 'AbsTol', 1e-12); [t, state] = ode45(@(t, state) orbital_dynamics(t, state, mu), time_span, state_init, options); end %%…arrow_forwardPage 8/5 Q4: (M4) LE Velocity: V [km/hr] Wavelength: L [m] M k y(t) Model Height: H [m] The figure above shows a model of a person riding a unicycle that contains a spring under its seat. The spring constant is k = 10,600 N/m. Assume that damping is minimal, the wheel of the unicycle has no mass and is not a spring, the unicyle always stays perfectly upright, and the person is represented by a rigid mass M = kg. a) When the unicycle is being ridden at speed V = 10 km/hr over the sinusoidal bumpy terrain shown above, with bump spacing L=0.6 m and bump height H 0.05 m, what will be the steady-state peak-to-peak amplitude of the motion y(t) [m] of the person riding the unicycle? b) Recalculate the steady-state peak-to-peak amplitude of the motion for 2.5, 5, and 20 km/hr. Will the rider have difficulty reaching speeds above 5 km/hr?arrow_forward1arrow_forward
- k₁ B₁ Fs(t) ww k2 12 m B2 Figure 4: A translational system 2. Consider a translational system shown in Fig. 4. Answer the following questions. (a) Draw a linear graph and write down all the elemental equations. (Don't draw the normal tree yet.) (b) From the elemental equation you write down, identify three variables that can potentially serve as state variables and explain why. (c) Are these potential state variables independent of each other? If not, use either conti- nuity or compatibility equation to prove it. How would you choose your state variables? (d) Draw a normal tree to see if there is any dependent energy storage element. What are the state variables according to your normal tree? Are they consistent with the explanation in the Part (c)?arrow_forwardequations: QB: Obtain the transfer function of system defined by the following state space Hi 0 4 8 [x₁ 0 8 5 X2 + -10-30-20x330/u [123] [x1 Y=[1 2 0] X₂ X3 snp-you tvavearrow_forwardPlease solve this exercise found in NISE, control engineering book. Please solve this using the translational mechanical system transfer fucntion method and kindly explain as well since this is an exercise to master the topic. Thank you very much!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License