Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3RQ
Define state variables.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) a) Derive the mathematical model for the system shown below.
b) Find a state variable model (matrix form) for the system.
b) Determine state matrix, input matrix, and output matrix, when f (t) is defined as
the input and X2 is defined as output for the system.
(Here, both of the X1 and x2 , are time-dependent functions)
» f(t)
X1
X2
3,000 N
1,000 N
4,000
30 kg
20 kg
200 유
N.s
Use MATLAB to obtain a state model for the following equations; obtain the expressions for
the matrices A, B, C, and D. In both cases, the input is f(t); the output: is y.
a. 5d³yd²y
+7.
b.
dy
+3
dt³ dt² dt
Y(s)
5
=
F(s) s² +7s+4
- +6y=f(t)
!
Chapter 3 Solutions
Control Systems Engineering
Ch. 3 - Prob. 1RQCh. 3 - State an advantage of the transfer function...Ch. 3 - Define state variables.Ch. 3 - Define state.Ch. 3 - Define state vector.Ch. 3 - Define state space.Ch. 3 - What is required to represent a system in state...Ch. 3 - 8. An eighth-order system would be represented in...Ch. 3 - If the state equations are a system of first-order...Ch. 3 - Prob. 10RQ
Ch. 3 - What factors influence the choice of state...Ch. 3 - What is a convenient choice of state variables for...Ch. 3 - If an electrical network has three energy-storage...Ch. 3 - Prob. 14RQCh. 3 - Prob. 1PCh. 3 - Represent the electrical network shown in Figure...Ch. 3 - Prob. 3PCh. 3 - Represent the system shown in Figure P3.4 in state...Ch. 3 - Represent the rotational mechanical system shown...Ch. 3 - Represent the system shown in Figure P3.7 in state...Ch. 3 - 8. Show that the system of Figure 3.7 in the text...Ch. 3 - Find the state-space representation in...Ch. 3 - MATLAB ML 10. Repeat Problem 9 using MATLAB....Ch. 3 - For each system shown in Figure P3.9, write the...Ch. 3 - MATLAB ML
12. Repeat Problem 11 using MATLAB....Ch. 3 - 13. Represent the following transfer function in...Ch. 3 - Find the transfer function G(s) = Y(s)/R(s) for...Ch. 3 - MATLAB ML
15. Use MATLAB to find the transfer...Ch. 3 - 17. A missile in flight, as shown in Figure P3.10,...Ch. 3 - Given the dc servomotor and load shown in Figure...Ch. 3 - Prob. 20PCh. 3 - Prob. 23PCh. 3 - Experiments to identify precision grip dynamics...Ch. 3 - State-space representations are, in general, not...Ch. 3 - Figure P3.16 shows a schematic description of the...Ch. 3 - Prob. 28PCh. 3 - A single-pole oil cylinder valve contains a spool...Ch. 3 - Figure P3.17 shows a free-body diagram of an...Ch. 3 - 33. Parabolic trough collector. A transfer...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Solve differential equation and then put into state-space formarrow_forwardJ 6arrow_forward1. Reduce the following differential equation to the state space equation form. a. y" (t) + 3y' (t) + 2y (t) = u(t) b. y" (t) = u(t) — b₁y' (t) — boy (t) c. 4y" (t) cos (t) y' (t) + sin (t) y (t) = u(t)arrow_forward
- Mechanical Control Engg.arrow_forwardConsider the following mechanical system: k m +f b d²y(t) +b- dy(t) + ky(t) = f (t) m %3D dt? dt Obtain the state space model of the system with input f (t) and output y(t). Calculate the system matrices for m = 1, k = 1 and b = 2. Check the stability by using the second method of Lyapunov. 3.arrow_forwardB₁ 1*1* X1 A x2 (a) Identify state variables. (b) Find the state equations. K www M XXXX fa(t) B₂ For the system shown in the figure above, differential model equations are given below. B₁x₁ + Kx₁Kx₂ = 0 MX₂ + B₂x₂ + Kx₂ - Kx₁ = fa(t)arrow_forward
- Represent the translational mechanical system shown below in state space, where x3(t) is the output. State variables ニュ=X 3 = X2 Let -4 = X2 Es = X3 E6 = X3 x1(t) x2(t) x3(t) 1 N-sim 1 N-sim 1 Nim 1 Nim 1kg 1kg 1 kg J1 J2 J3 Fit)arrow_forwardDescribe the Limit State Design?arrow_forwardProblem 1: Write the transfer function of the systems. Problem 2: Write the differential equation and state space equation describing the following system. Please answer both the problems.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license