Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 53P
To determine
The density of unknown fluid added.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The perpendicular dimension of the cylindrical surface abcde in the figure to the plane of the figure is 6 m, and the radius of the circular surfaces is R=2.5 m. According to this;
a)Determine the horizontal and vertical components of the pressure force exerted by water on the cylindrical surface in abcde.(Fhorizontal?Fvertical?)
b)Determine the vertical distance from the point of action of the horizontal component of the pressure force acting on the cylindrical surface of abcde to the point e, and the horizontal distance from the point of action of the vertical component of the pressure force to the line ace.(Fhorizontal?Fvertical?)
I need solve this question in quickly time please please
The figure below shows a rectangular tank of dimensions ho = 2.5 m and b = 2 m is filled to the brim with a liquid of specific gravity 1.1 (tank is 1 m into plane of figure). The
tank is subjected to a horizontal acceleration ax, and 30% of the liquid spills over. Determine the difference in liquid pressures at the lower left-hand corner (Point E) and
lower right-hand corner of the tank (Point F).
PE-PF= 1. [15.70090597, 16.672095597
Free
surface
ho
Liquid
X
b
Liquid at rest
➡ho
kPa.
9 Free
surface
Liquid
b
ax
Under constant acceleration
Chapter 3 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 3 - What is the difference between gage pressure and...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - A vacuum gage connected to a chamber reads 25 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - A diver's watch resists an absolute pressure of...
Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - The pressure in a water line is 1500 kPa. What is...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - A 180-Ibm man has a total foot imprint area of 68...Ch. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - The piston of a vertical piston-cylinder device...Ch. 3 - The vacuum pressure of a condenser is given to be...Ch. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - Determine the pressure exerted on a diver at 15 m...Ch. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - The hydraulic lift in a car repair shop has an...Ch. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - There is water at a height of 1 m in the rube open...Ch. 3 - Prob. 53PCh. 3 - A simple experiment has long been used to...Ch. 3 - A multifluid container is connected to a U-tube....Ch. 3 - A hydraulic lift is to be used to lift a 2500 kg...Ch. 3 - On a day in which the local atmospheric pressure...Ch. 3 - A U-tube manometer is used to measure the pressure...Ch. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A cylindrical tank is folly filled with water...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - The bowl shown in the figure (the white volume) is...Ch. 3 - A triangular-shaped gate is hinged at point A, as...Ch. 3 - Gate AB ( 0.60.9m ) is located at the bottom of a...Ch. 3 - Find the force applied by support BC to the gate...Ch. 3 - A concrete block is attached to the sate as shown....Ch. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Prob. 93CPCh. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 95CPCh. 3 - Consider two identical spherical bails submerged...Ch. 3 - Prob. 97PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - The density of a liquid is to be determined by an...Ch. 3 - Prob. 100PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - One of the common procedures in fitness programs...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - A water tank is being towed by a truck on a level...Ch. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 111PCh. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 120PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A 4-m-diameter vertical cylindrical milk tank...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - Prob. 126PCh. 3 - Prob. 127PCh. 3 - Prob. 128PCh. 3 - Two vertical and connected cylindrical tanks of...Ch. 3 - The U-tube shown the figure subjected to an...Ch. 3 - Prob. 131EPCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Determine the pressure exerted on the surface of a...Ch. 3 - A vertical, frictionless piston-cylinder device...Ch. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - The average atmospheric pressure on earth is...Ch. 3 - Prob. 137PCh. 3 - Prob. 139PCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - Prob. 142PCh. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 144PCh. 3 - An oil pipeline and a 1.3-m3 rigid air tank are...Ch. 3 - A 20-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 148PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 151PCh. 3 - Prob. 152EPCh. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 156PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - The density of a floating body can be determined...Ch. 3 - A raft is made using a number of logs with 25 cm...Ch. 3 - A prismatic timber is at equilibrium in a liquid,...Ch. 3 - The cylindrical lank containing water accelerates...Ch. 3 - A 30-cm-diameter. 100-cm-hish vertical cylindrical...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 168PCh. 3 - Determine the vertical force applied by water on...Ch. 3 - Prob. 170PCh. 3 - In order to keep the cone-shaped plus closed as...Ch. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - The atmospheric pressure in a location is measured...Ch. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 179PCh. 3 - Prob. 180PCh. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 186PCh. 3 - Prob. 187PCh. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - Compare fee vortex with forced vortex according to...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One side of the container has a 03-m square door that is hinged at its top edge. If the container is filled with water, determine the smallest force F that must be applied to the bottom edge of the door to keep it closed.arrow_forwardSS 3-35 An open tank is filled with water to the depth indicated. Atmospheric pressure acts on all outer surfaces of the tank. Determine the magnitude and line of action of the vertical component of the force of the water on the curved part of the tank bottom. Water 10 ft 4 ft 10 ft -12 ft-arrow_forwardA multifluid container is connected to a U-tube, as shown in the figure. For the given specific gravitles and fluid column heights. determine the gage pressure at A. Also determine the height of a mercury column that would create the same pressure at A. The column heighth of oil is 86 cm. The specific gravitles are 1.26 for glycerin and 0.90 for oll. We take the standard density of water to be Pw=1000 kg/m³ and the specific gravity of mercury to be 13.6. h 35 cm 18 cm Į Oil SG-0.90 Water Glycerin SG-1.26 90 cm 15 cm The gage pressure at A is kPa. The height of a mercury column that would create the same pressure at A is cm.arrow_forward
- Quiz navi The top part of a water tank is divided into two compartments, as shown in given figure. Now a fluid with an unknown density is poured into one side, and the water level rises a certain amount on the other side to compensate for this effect. Based on the final fluid heights shown on the figure (h = 81.9, h2 =51.9, and h3 = 98.1 cm). Determine the density of the fluid added. Assume the liquid does not mix with water and the density of water is 998.8 kg/m°. Unknown Finish at liquid hi h3 WATER h2 (use one number after the decimal xxx.x) Answer:arrow_forwardShow step-by-step, and explain each step.arrow_forwardFind the total pressure and the position of the center of pressure of the vertically immersed rectangular plate as shown in the figure. Free water surface b-3 marrow_forward
- Bottle was filled with water and a hole is punched in the bottle.When the bottle is closed, water does not come out of the hole. However, when the bottle is open, water comes out of the hole. Other information would be - Atmospheric pressure is 1 atm (101325 Pa) - Assume bottle is 20 cm and the hole is on the 10 cm above the bottom of the bottle (use it as reference level) Define the pressure(s) acting at the hole when the bottle is open and calculate total pressure. Define the pressure(s) acting at the hole when the bottle is closed and calculate total pressure. Using the results from part a and b, why does water come out when the bottle is open and why does not it come out when the bottle is closed?arrow_forward(b) Consider two identical water tanks (20 m x 10 m x 10 m) filled with water. The depth of water in the first tank is 8 m and it is stationary. The depth of water in the second tank is 6 m and it is moving vertically downward with a constant acceleration of 3.3 m/s?. Which tank will have a higher pressure at the bottom? Now, the first tank is moving horizontally in the direction of its length with a constant acceleration of 2.4 m/s?. Determine the shape of the free surface and the total force on the base and vertical faces of this tank. What will happen if these tanks are completely filled with water?arrow_forwardA tank contains oil (s = 0.80), gasoline (s = 0.90) and sea water (s = 1.03). If the depth of the liquids are 0.5 m, 0.8 m and 1 m for oil, gasoline and sea water respectively. Find the pressure at the interface of oil and gasoline and bottom of the tank.arrow_forward
- The flow of water from a reservoir is controlled by an L-shaped gate hinged at point A, as shown in the figure. The mass of the weight at B (a = 4 m to the right of A, b = 3 m above the base) is 5125 kg. If the gate opens when the water height is 1.75 m above the base, determine the width (in meters, not showing) of the gate.arrow_forward2. Mercury is poured into the tube in the figure until the mercury occupies 375 mm of the tube's length. An equal volume of water is then poured into the left leg. Locate the water and mercury surfaces. Also determine the maximum pressure in the tube. Uniform diameter tube 2 -160 mm-arrow_forwardแสดงวิธีทำให้ดูหน่อยครับarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY