Consider the system shown in Fig. P3-51. If a change of 0.9 kPa in the pressure of air causes the brine-mercury interface in the ratio to right column to drop by 5 mm in the brine level in the right column while the pressure in the bine pipe remains constant, determine.
The ratio of
Answer to Problem 51P
The ratio of
Explanation of Solution
Given information:
The change in pressure is
The following figure shows the arrangement of the liquids in the differential tube.
Figure-(1)
Write the expression for equating the pressure of the fluids in both the limbs initially.
Here, the initial pressure of air is
Pressure in the left side of the limb is equal to the pressure in the right limb.
Write the expression for equating the pressure of the fluid in both the limbs after the pressure drop of air.
Here, the final pressure of the air is
Substitute
Here, the change in differential mercury height is
Write the equation for the volume of brine as it remains constant.
Write the expression change of mercury level in the arrangement.
Substitute
Substitute
Here, the pressure difference is
Calculation:
Substitute
Conclusion:
The ratio of
Want to see more full solutions like this?
Chapter 3 Solutions
Fluid Mechanics: Fundamentals and Applications
- Please help me answer this problem ASAP badly needed. Thank youarrow_forwardA multifluid container is connected to a U-tube, . For the given specific gravities and fluid column heights, determine the gage pressure at A. Also determine the height of a mercury column that would create the same pressure at A.arrow_forwardA tank with a height of 1m contains equal volumes of waterliquid and vapor. The gauge pressure at the top of thetank is 200 kPa g.to. Determine the pressure at the vapor-liquid interface.b. Evaluate the pressure variation between the top and thetank bottom, as a percentage of measured pressure.Assume that Po (ambient atmospheric pressure) is 101 kPa andthat the densities of the liquid and vapor phases are 93 kg / m3and 1,655 kg / m ^ 3 respectively. see imgarrow_forward
- Parvinbhaiarrow_forwardThe level of mercury in the right limb is 0.6m above that in the left limb and the space above mercury in the rightlimb contains benzene (SG=0.88) to a height of 0.4m. The left limb of a U-tube manometer is connected to a pipe conveying water, the level of mercury (SG=13.6) in the leg being 0.8m below the center of the pipeline and the right limb is open to atmosphere. Determine the pressure ofwater in the pipe.arrow_forwardConsider a differential manometer whose ends are connected to two different pipes A and B and containing different liquids at different levels. Let us assume that the pressure at point A is more than that at point B. Oil is in pipe A whose density 800 kg/m3 shows a difference in mercury levels as 100 mm. The height of oil between center of pipe A to the mercury level in left limb is 200 mm. Methanol (relative density = 0.791) is in pipe B and the height of Methanol between center of pipe B and mercury level in the right limb is 5 cm. Calculate the difference in pressures at the two points A and B.arrow_forward
- You want to size a hollow sphere made of bronze with an outer radius re and an unknown inner radius ri, as shown in the attached figure. This hollow sphere must be immersed in water and must have a thickness e such that it can be suspended in the liquid. Determine the thickness of the hollow sphere for this condition to be met. To facilitate calculations, consider that the interior of the sphere is in a vacuum. The data needed to solve the problem are: re = 0.5 m rhow = 1000 kg / m3 rhobronze = 8300 kg / m3arrow_forwardI need the answer as soon as possiblearrow_forwardThe right limb of a simple U-tube manometer containing mercury is open to the atmosphere while the left limb is connected to a pipe in which a fluid of SG = 0.9 is flowing. The center of the pipe is 12 cm below the level of mercury in the right limb. Find the pressure of fluid in the pipe if the difference of mercury level in the two limbs is 20 cm. Use SGHg = 13.6. P A 12 I 21K 20 cmarrow_forward
- Visualize a fluid in a cylindrical tank of uniform cross sectional area sitting on the floor. As the elevation from the floor increases, the observed pressure at that point. increases decreases remains the same cannot be determinedarrow_forwardQUESTION 2 As shown in the figure, an inverted U-tube manometer contains Meriam red oil and water (both at temperature of 20 °C). Given that the pressure differential between the centerlines of pipes B and A (i.e. PB – PA) is 2.1 kPa, determine the value of the differential reading h (in m). - 0.2 m + Oil Water + B 0.3 marrow_forward13,600 kg/m) is con- 3–29 A mercury manometer (p nected to an air duct to measure the pressure inside. The dif- ference in the manometer levels is 15 mm, and the atmos- pheric pressure is 100 kPa. (a) Judging from Fig. P3-29, determine if the pressure in the duct is above or below the atmospheric pressure. (b) Determine the absolute pressure in the duct. AIR h = 15 mm P = ? FIGURE P3-29arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY