Fluid Mechanics Fundamentals And Applications
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 45P

Freshwater and seamier flowing in parallel horizontal pipelines are connected to each other by a double U-tube manometer, as shown in Fig. P3-48. Determine the pressure difference between the two pipelines. Take the density of seawater at that location to be ρ = 71035 kg/m 3 . Can the air column be ignored in the analysis?

Expert Solution & Answer
Check Mark
To determine

The pressure difference between two pipelines.

Answer to Problem 45P

The pressure difference is 5.39kPa. The air column can be ignored since the density of air very low.

Explanation of Solution

Given information:

The density of seawater is 1035kg/m3.

The following figure represents freshwater and seawater flowing in parallel horizontal pipelines which are connected to each other by a double U-tube manometer.

  Fluid Mechanics Fundamentals And Applications, Chapter 3, Problem 45P

Figure 1

Write the equation for the pressure difference of sea water and fresh water.

  ΔP=PHg+PairPfwPsw   ...... (I)

Here, the pressure difference is ΔP, the pressure on mercury is PHg, the pressure on air is Pair, pressure on freshwater is Pfw and pressure on seawater is Psw.

Write the expression for pressure on air.

  Pair=ρair×g×hair   ...... (II)

Here, density of air is ρair, acceleration due to gravity is g, and height of air column is hair.

Write the expression for density of mercury.

  ρHg=SGHg×ρw   ...... (III)

Here, specific gravity of mercury is SGHg and density of water is ρw.

Write the expression for pressure on mercury.

  PHg=ρHg×g×hHg   ...... (IV)

Here, pressure on mercury is PHg, density of mercury is ρHg, acceleration due to gravity is g and height of mercury column is hHg.

Write the expression for pressure on seawater.

  Psw=ρsw×g×hsw...... (V)

Here, pressure on seawater is Psw, density of seawater is ρsw, acceleration due to gravity is g, height of seawater column is hsw.

Write the expression for pressure on seawater.

  Pfw=ρfw×g×hfw...... (VI)

Here, pressure on freshwater is Pfw, density of freshwater is ρfw, acceleration due to gravity is g, height of freshwater column is hfw.

Calculation:

Substitute 0 for ρair in Equation (II).

  Pair=0×g×hair=0

Substitute 13.6 for SGHg and 1000kg/m3 in Equation (III).

  ρHg=(13.6)(1000kg/ m 3)=13600kg/m3

Substitute 13600kg/m3 for ρHg, 9.81m/s2 for g and 10cm for hHg in Equation (IV).

  PHg=(13600kg/ m 3)(9.81m/ s 2)(10cm)=(13600kg/ m 3)(9.81m/ s 2)(10cm× 1m 100cm)=(13600kg/ m 3)(9.81m/ s 2)(0.1m)=13341.6kg/ms2

  PHg=13341.6kg/ms2( 1Pa 1 kg/ ms 2 )=13341.6Pa( 1Pa 1000kPa)=13.34kPa

Substitute 1035kg/m3 for ρsw

  9.81m/s2 for g and 30cm for hsw in Equation (V).

  Psw=(1035kg/ m 3)(9.81m/ s 2)(30cm)=(1035kg/ m 3)(9.81m/ s 2)(30cm× 1m 100cm)=(1035kg/ m 3)(9.81m/ s 2)(0.3m)=3045.0055kg/ms2

  Psw=3045.0055kg/ms2( 1Pa 1 kg/ ms 2 )=3045.0055Pa( 1Pa 1000kPa)=3.045kPa

Substitute 1000kg/m3 for ρfw, 9.81m/s2 for g and 50cm for hfw in Equation (VI).

  Pfw=(1000kg/ m 3)(9.81m/ s 2)(50cm)=(1000kg/ m 3)(9.81m/ s 2)(50cm× 1m 100cm)=(1000kg/ m 3)(9.81m/ s 2)(0.5m)=4905kg/ms2

  Pfw=4905kPa( 1Pa 1 kg/ ms 2 )=4905kPa( 1Pa 1000kPa)=4.9kPa

Substitute 13.34kPa for PHg, 0 for Pair, 4.905kPa for Pfw and 3.045kPa for Psw in Equation (I)/

  ΔP=13.34kPa+0+4.905kPa+3.045kPa=5.39kPa

Conclusion:

The pressure difference is 5.39kPa.The air column can be ignored since the density of air very low.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Pgage U-shaped liquid manometer is connected to a closed tank, which contains water and air. The gage pressure in the tank is Pagge = 30 kPa. The manometric fluid is mercury, with density pmercury = 13600 kg/m³, and the water density is Pwater 1000 kg/m³. Determine the readings of the liquid manometer (h = ?), as shown on the figure, if the specific weight of the air is neglected. Air Im Water Im Im %3D h Mercury
Open tank (4 m long, 3 m height and 3 m wide) contains liquid (S-0.8) to height 1.5 m. If this tank is accelerated along its length on a horizontal truck at a constant value of 2.5 m/s², determine pressure at the bottom of the tank at front and rear edges (in kN/m?). (take y-9.8 kN/m³ for water)
Fresh water and sea water flowing in parallel horizontal pipelines are connected to each other by a double U-tube manometer, as shown in the below figure. If hw = 0.65 m, hHg = 0.15 m, hair = 0.7 m, and hsea = 0.4 m, determine the pressure difference between the two pipelines. Take the densities of sea water, mercury, and water at that location to be ρsea = 1035 kg/m3, ρHg = 13,600 kg/m3, and ρw = 1000 kg/m3, respectively. (Round the final answer to two decimal places.) The pressure difference between the two pipelines is_____ kPa. Can the air column be ignored in the analysis?

Chapter 3 Solutions

Fluid Mechanics Fundamentals And Applications

Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - Prob. 17EPCh. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - Prob. 20EPCh. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - The basic barometer can be used to measure the...Ch. 3 - Prob. 28PCh. 3 - Prob. 29EPCh. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - Prob. 44PCh. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Prob. 52EPCh. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Prob. 54PCh. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Prob. 80PCh. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - Prob. 83PCh. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - A retaining wall against a mud slide is to be...Ch. 3 - Prob. 87PCh. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - Consider a flat plate of thickness t, width w into...Ch. 3 - Prob. 91PCh. 3 - Consider a 1-m wide inclined gate of negligible...Ch. 3 - Prob. 93PCh. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Consider two identical spherical bails submerged...Ch. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - The density of a liquid is to be determined by an...Ch. 3 - A crane is used to lower weights into a lake for...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Prob. 113PCh. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 115PCh. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Prob. 117PCh. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A 3-m-diameter vertical cylindrical milk tank...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 124PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Prob. 136PCh. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - A 30-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 139PCh. 3 - Prob. 141PCh. 3 - Prob. 142EPCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - A vertical, frictionless pistoncylinder device...Ch. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 147PCh. 3 - The average atmospheric pressure on earth is...Ch. 3 - When measuring small pressure differences with a...Ch. 3 - Prob. 150EPCh. 3 - Prob. 151PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 154PCh. 3 - Prob. 155EPCh. 3 - The pressure of water flowing through a pipe is...Ch. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - Prob. 158PCh. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 161PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - Prob. 165PCh. 3 - A 1-m-diameter, 2-m-high vertical cylinder is...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - Prob. 169PCh. 3 - Prob. 170PCh. 3 - The density of a floating body can be determined...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 15-cm-diameter, 40-cm-high vertical cylindrical...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY