
Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 102P
To determine
The height of the ice block below the surface.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6.105. Determine force P on the cable if the spring is compressed 0.025 m when the mechanism is in the
position shown. The spring has a stiffness of k = 6 kN/m.
E
P
150 mm
D
T
30°
200 mm
200 mm
200 mm
B
800 mm
6.71. Determine the reactions at the supports A, C, and E of the compound beam.
3 kN/m
12 kN
A
B
CD
E
-3 m 4 m
6 m
3 m
2 m
A countershaft carrying two V-belt pullets is shown in the figure. Pulley A receives power
from a motor through a belt with the belt tensions shown. The power is transmitted through
the shaft and delivered to the belt on pulley B. Assume the belt tension on the loose side
(T1) at B is 30% of the tension on the tight side (T2).
(a) Determine the tension (i.e., T₂ and T₁) in the belt on pulley B, assuming the shaft is
running at a constant speed.
(b) Find the magnitudes of the bearing reaction forces, assuming the bearings act as
simple supports.
(c) Draw shear-force and bending moment diagrams for the shaft (in XZ and XY plane
if needed).
(d) Calculate the maximum moments at points A and B respectively and find the point
of maximum bending moment (A or B).
(e) Find maximum stresses (tensile, compressive, and shear stresses) at the identified
point of maximum moment (hint: principal and max shear stresses)
8 dia.
9
400lbf
50lbf
45°
1.5 dia.
T₂
B
Units in inches
T₁
10 dia.
Chapter 3 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - What is the difference between gage pressure and...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Prob. 7PCh. 3 - A vacuum gage connected to a chamber reads 36 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - The pressure in a water line is 1500 kPa. What is...
Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - Prob. 17EPCh. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - Prob. 20EPCh. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - The basic barometer can be used to measure the...Ch. 3 - Prob. 28PCh. 3 - Prob. 29EPCh. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - Prob. 44PCh. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Prob. 52EPCh. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Prob. 54PCh. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Prob. 80PCh. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - Prob. 83PCh. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - A retaining wall against a mud slide is to be...Ch. 3 - Prob. 87PCh. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - Consider a flat plate of thickness t, width w into...Ch. 3 - Prob. 91PCh. 3 - Consider a 1-m wide inclined gate of negligible...Ch. 3 - Prob. 93PCh. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Consider two identical spherical bails submerged...Ch. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - The density of a liquid is to be determined by an...Ch. 3 - A crane is used to lower weights into a lake for...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Prob. 113PCh. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 115PCh. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Prob. 117PCh. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A 3-m-diameter vertical cylindrical milk tank...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 124PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Prob. 136PCh. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - A 30-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 139PCh. 3 - Prob. 141PCh. 3 - Prob. 142EPCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - A vertical, frictionless pistoncylinder device...Ch. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 147PCh. 3 - The average atmospheric pressure on earth is...Ch. 3 - When measuring small pressure differences with a...Ch. 3 - Prob. 150EPCh. 3 - Prob. 151PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 154PCh. 3 - Prob. 155EPCh. 3 - The pressure of water flowing through a pipe is...Ch. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - Prob. 158PCh. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 161PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - Prob. 165PCh. 3 - A 1-m-diameter, 2-m-high vertical cylinder is...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - Prob. 169PCh. 3 - Prob. 170PCh. 3 - The density of a floating body can be determined...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 15-cm-diameter, 40-cm-high vertical cylindrical...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The cantilevered bar in the figure is made from a ductile material and is statically loaded with F,, = 200 lbf and Fx = F₂ = 0. Analyze the stress situation in rod AB by obtaining the following information. Note that the stress concentration factors are neglected in the following questions (Kt and Kts=1). (a) Determine the precise location of the critical stress element. (b) Sketch the critical stress element and determine magnitudes and direction for all stresses acting on it. (Transverse shear may only be neglected if you can justify this decision.) (c) For the critical stress element, determine the principal stresses and maximum shear stress. 6 in 1-in dia. B +1- in in 2 in 5 inarrow_forwardA laminated thick-walled hydraulic cylinder was fabricated by shrink-fitting jacket having an outside diameter of 300mm onto a SS 304 steel tube having an inside diameter of 100mm and an outside diameter of 200mm as shown in the figure. The interference (8) was 0.15mm. When the Young's modulus for both SS304 and 1020 steel is the same as 200GPa, and the Poisson's ratio is also the same as 0.3 for both materials, find the followings. Initially 100 mm Initially 200 mm Initially 300 mm SS 304 1020 steel (a) P; (interfacial contact stress) (b) The maximum stresses (σ, and σ+) in the laminated steel cylinder resulting from the shrink fit.arrow_forwardAuto Controls Design a proportional derivitivecontroller for a plant orsystemthat satisfies the following specifications : 1. is steady-state error is less than 2 % for a ramp input. 2.) Damping ratio (zeta) is greater than 0.7have determined the 3. Once youvalue of kp and kd, then plotthe response of the compensated(with controller) and uncompensated( without the controller, only the plantsystem using MATLAB.arrow_forward
- Auto Controls (a) Refer to the above figure .What kind of controller is it ? (b) simplify the block diagramto derive the closed loop transfer function of the system. (C) What are the assumptions thatare needed to make to findthe controller gain ? What arethe value of Kp , Ti and Td ?arrow_forwardAuto Controls Design a PID controller for thefollowing system so that the modified system satisfies the followingspecifications : 1. settling time ,ts = 1.96 s and % Overshoot Mp = 70.7 % Assume a non-dominant pole at s = -15 to solve the problem The plot the compensated andThen plot the uncompensated system in MATLAB. what can you see from the plot ? what is your observation ?arrow_forwardFourth year Monthly exam\3 2024-2025 Power plant Time: 1 Hr Q1. A gas turbine power plant operates on a modified Brayton cycle consisting of two-stage compression with intercooling to the initial temperature between stages, two-stage expansion with reheating to the maximum cycle temperature, and two regenerative heat exchangers. The following data is given: Inlet air temperature: 300 K Maximum cycle temperature: 1400 K Pressure ratio across each compressor stage: 4 Pressure ratio across each turbine stage: 4 Isentropic efficiency of compressors and turbines: 85% Effectiveness of each regenerator: 80% a) Draw a schematic and T-s diagram of the cycle. b) Determine the thermal efficiency of the cycle. c) Calculate the net specific work output (in kJ/kg). d) Discuss the impact of regenerators on the cycle performance. Examiner Prof. Dr. Adil Al-Kumaitarrow_forward
- Auto Controls The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi. Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is relatedarrow_forwardLiquid hexane flows through a counter flow heat exchanger at 5 m3/h as shown in Figure E5.5.The hexane enters the heat exchanger at 90°C. Water, flowing at 5 m3/h, is used to cool the hexane.The water enters the heat exchanger at 15°C. The UA product of the heat exchanger is found to be2.7 kW/K. Determine the outlet temperatures of the hot and cold fluids and the heat transfer ratebetween them using LMTD method.arrow_forwardDetermine the fluid outlet temperatures and the heat transfer rate for the counter flow heatexchanger described in Problem 3 using the ε-NTU model. Assume that the properties can beevaluated at the given fluid inlet temperatures.arrow_forward
- Section View - practice Homework 0.5000 3.0000 2,0000 1.0000arrow_forwardDrawing the section view for the following multiview drawing AutoCAD you see the section pratice I need to show how to autocadarrow_forwardA boiler with 80% efficiency produces steam at 40bar and 500 C at a rate of 1.128kg/s. The temperature of the feed water is raised from 25 C to 125 C in the economizer and the ambient air is drawn to the boiler at a rate of 2.70 kg/s at 16 C. The flue gases leave the chimney at rate of 3 kg/s at 150 C with specific heat of 1.01 kJ/kg.K. The dryness fraction of steam collected in the steam drum is 0.95. 1- Determine the heat value of the fuel. 2- The equivalence evaporation. 3- Draw the heat balance sheet.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license