(a)
Interpretation:
Relative
Concept Introduction:
Alloys are formed from combination of metal with other elements. It retains the properties of metal but affects their crystalline structure. Examples of alloys are stainless steel, brass, bronze, and white gold.
(a)
Answer to Problem 3I.7E
Alloy has 2.8 atoms of copper per nickel atoms.
Explanation of Solution
Alloy has
Expression to determine number of atoms present in given mass of element is as follows:
Substitute
Substitute
Number of
Hence alloy has 2.8 atoms of copper per nickel atoms.
(b)
Interpretation:
Relative number of atoms of each element in alloy with
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 3I.7E
Alloy has 15 atoms of
Explanation of Solution
Alloy has
Expression to determine number of atoms present in given mass of element is as follows:
Substitute
Substitute
Substitute
Divide equation (2) by (3) to determine number of
Divide equation (4) by (3) to determine number of
Hence alloy has 15 atoms of
Want to see more full solutions like this?
Chapter 3 Solutions
Chemical Principles: The Quest for Insight
- Titanium carbide, TiC, adopts the rock-salt (NaCl) crystal structure. (i) Draw the unit cell indicating clearly the position of all atoms.(ii) The unit cell parameter for TiC is 0.4329 nm. Calculate the C-Cdistance, the Ti-C bond length and the Ti-Ti distance.arrow_forwardA cubic unit cell contains manganese ions at the corners and fluoride ions at the center of each edge.(a) What is the empirical formula of this compound? Explain your answer.(b) What is the coordination number of the Mn3+ ion?(c) Calculate the edge length of the unit cell if the radius of a Mn3+ ion is 0.65 A.(d) Calculate the density of the compound.arrow_forward1.Indium has a tetragonal unit cell for which the a and c lattice parameters are 0.459 and 0.495 nm, respectively. (a) If the atomic packing factor and atomic radius are 0.693 and 0.1625 nm, respectively, determine the number of atoms in each unit cell. (b) The atomic weight of indium is 114.82 g/mol; compute its theoretical density.arrow_forward
- Sodium has the body-centered cubic structure, and its lattice parameter is 4.28 Å.(a) How many Na atoms does a unit cell contain?(b) What fraction of the volume of the unit cell is occupied by Na atoms, if they are represented by spheres in contact with one another?arrow_forwardWrite the difference between ferromagnetism and anti-ferromagnetism.arrow_forwardAt room temperature, the edge length of the cubic unit cell in elemental silicon is 5.431 Å, and the density of silicon at the same temperature is 2.328 g cm-3 . Each cubic unit cell contains eight silicon atoms. Using only these facts, perform the following operations.(a) Calculate the volume (in cubic centimeters) of one unit cell.(b) Calculate the mass (in grams) of silicon present in a unit cell.(c) Calculate the mass (in grams) of an atom of silicon.(d) The mass of an atom of silicon is 28.0855 u. Estimate Avogadro’s number to four significant figures.arrow_forward
- Gallium has an orthorhombic structure, with a0 = 0.45258 nm, b0 = 0.45186 nm, and c0 = 0.76570 nm. The atomic radius is 0.1218 nm. The density is 5.904 g cm3, and the atomic weight is 69.72 g mol. Determine (a) the number of atoms in each unit cell; and (b) the packing factor in the unit cell.arrow_forwardNaH crystallizes with the same crystal structure as NaCl. The edge length of the cubic unit cell of NaH is 4.880 Å.(a) Calculate the ionic radius of H−. (The ionic radius of Li+ is 0.0.95 Å.)(b) Calculate the density of NaH.arrow_forward(a) Magnesium (Mg) has a hexagonal close-packed (HCP) crystal structure with the lattice parameter of a = 0.321 nm and c= 0.521 nm and the atomic radius is 0.173 nm. (i) What is the number of atoms per unit cell in HCP structure? (ii) Determine the atomic packing factor of the Mg unit cell. (iii) Is Mg containing an ideal atomic packing factor? You may justify your answer by evaluating the HCP c/a ratio. Subsequently, will slip be harder in Mg compared to the ideal HCP structure? Justify your answer.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning