General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.82SP
Interpretation Introduction
Interpretation:
The energy change during formation of lithium bromide from lithium and bromine has to be calculated.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The standard heat of formation of BaBr2BaBr2 is −−764 kJ/molkJ/mol. The first ionization energy of BaBa is 503 kJ/molkJ/mol and its second ionization energy is 965 kJ/molkJ/mol. The heat of sublimation of Ba[Ba(s)→Ba(g)]Ba[Ba(s)→Ba(g)] is 175 kJ/molkJ/mol. The bond energy of Br2Br2 is 193 kJ/molkJ/mol, the heat of vaporization of Br2(l)Br2(l) is 31 kJ/molkJ/mol, and the electron affinity of BrBr is −−325 kJ/molkJ/mol.
Calculate the lattice energy of BaBr2BaBr2.
Use the Born-Haber cycle to calculate the lattice energy of KF. [The heat of sublimation of K is 91.6 kJ·mol−1 and
ΔfH(KF) = −567.3 kJ·mol−1.
Bond enthalpy for F2 is
158.8 kJ·mol−1.
Other data may be found in the Ionization Energies Table and the Electron Affinities Table.]
Calculate the second ionization energy of the metal M (AHion2 in kJ/mol) using the
following data:
Lattice enthalpy of MO(s), AH = -2278 kJ/mol
Bond dissociation enthalpy of O2(g) = +498 kJ/mol
First electron affinity of O = -141 kJ/mol
Second electron affinity of O = +744 kJ/mol
Enthalpy of sublimation of M = + 125 kJ/mol
First ionization energy of M = + 309 kJ/mol
Standard enthalpy of formation of MO(s), AH = -341 kJ/mol
Chapter 3 Solutions
General Chemistry: Atoms First
Ch. 3.1 - Prob. 3.1PCh. 3.1 - Which of the following drawings is most likely to...Ch. 3.2 - Give systematic names for the following compounds:...Ch. 3.2 - Write formulas for the following compounds: (a)...Ch. 3.2 - Prob. 3.5CPCh. 3.2 - Give systematic names for the following compounds:...Ch. 3.2 - Prob. 3.7PCh. 3.2 - Prob. 3.8CPCh. 3.3 - Predict the ground-state electron configuration...Ch. 3.3 - What doubly positive ion has the following...
Ch. 3.4 - Prob. 3.11PCh. 3.4 - which of the following spheres represents a K+...Ch. 3.5 - Using the periodic table as your guide, predict...Ch. 3.6 - (a) Which has the larger third ionization energy,...Ch. 3.6 - Three atoms have the following electron...Ch. 3.6 - Order the indicated three elements according to...Ch. 3.7 - Prob. 3.17PCh. 3.7 - Which of the indicated three elements has the...Ch. 3.8 - What noble-gas configurations are the following...Ch. 3.8 - Prob. 3.20PCh. 3.9 - Calculate the net energy change in kilojoules per...Ch. 3.10 - Which substance in each of the following pairs has...Ch. 3.10 - One of the following pictures represents NaCl and...Ch. 3.11 - Prob. 3.24PCh. 3.11 - Complete the following equations so that the same...Ch. 3.12 - Prob. 3.26PCh. 3.12 - Prob. 3.27PCh. 3.14 - Prob. 3.28PCh. 3 - In the following drawings, red spheres represent...Ch. 3 - Which of the following drawings is more likely to...Ch. 3 - Prob. 3.31CPCh. 3 - Prob. 3.32CPCh. 3 - Prob. 3.33CPCh. 3 - Prob. 3.34CPCh. 3 - Prob. 3.35CPCh. 3 - Prob. 3.36CPCh. 3 - Prob. 3.37CPCh. 3 - Prob. 3.38SPCh. 3 - Prob. 3.39SPCh. 3 - Prob. 3.40SPCh. 3 - Prob. 3.41SPCh. 3 - Prob. 3.42SPCh. 3 - Prob. 3.43SPCh. 3 - Prob. 3.44SPCh. 3 - Prob. 3.45SPCh. 3 - Prob. 3.46SPCh. 3 - Prob. 3.47SPCh. 3 - Prob. 3.48SPCh. 3 - Prob. 3.49SPCh. 3 - Prob. 3.50SPCh. 3 - Prob. 3.51SPCh. 3 - Prob. 3.52SPCh. 3 - What is the identity of the element X in the...Ch. 3 - Prob. 3.54SPCh. 3 - Prob. 3.55SPCh. 3 - Prob. 3.56SPCh. 3 - Prob. 3.57SPCh. 3 - Prob. 3.58SPCh. 3 - Prob. 3.59SPCh. 3 - Prob. 3.60SPCh. 3 - Prob. 3.61SPCh. 3 - Prob. 3.62SPCh. 3 - Prob. 3.63SPCh. 3 - Prob. 3.64SPCh. 3 - Prob. 3.65SPCh. 3 - Prob. 3.66SPCh. 3 - Prob. 3.67SPCh. 3 - Which element in each of the following sets has...Ch. 3 - Prob. 3.69SPCh. 3 - Prob. 3.70SPCh. 3 - Prob. 3.71SPCh. 3 - Prob. 3.72SPCh. 3 - Prob. 3.73SPCh. 3 - Prob. 3.74SPCh. 3 - Prob. 3.75SPCh. 3 - Prob. 3.76SPCh. 3 - Prob. 3.77SPCh. 3 - Prob. 3.78SPCh. 3 - Order the following compounds according to their...Ch. 3 - Calculate the energy change in kilojoules per mole...Ch. 3 - Prob. 3.81SPCh. 3 - Prob. 3.82SPCh. 3 - Prob. 3.83SPCh. 3 - Prob. 3.84SPCh. 3 - Prob. 3.85SPCh. 3 - Calculate the overall energy change in kilojoules...Ch. 3 - The estimated lattice energy for CsF2(s) is +2347...Ch. 3 - Prob. 3.88SPCh. 3 - Prob. 3.89SPCh. 3 - Prob. 3.90SPCh. 3 - Prob. 3.91SPCh. 3 - Prob. 3.92SPCh. 3 - Prob. 3.93SPCh. 3 - Prob. 3.94SPCh. 3 - Prob. 3.95SPCh. 3 - Prob. 3.96SPCh. 3 - Prob. 3.97SPCh. 3 - Prob. 3.98SPCh. 3 - Prob. 3.99SPCh. 3 - Prob. 3.100CHPCh. 3 - Prob. 3.101CHPCh. 3 - Prob. 3.102CHPCh. 3 - Prob. 3.103CHPCh. 3 - Prob. 3.104CHPCh. 3 - Prob. 3.105CHPCh. 3 - Prob. 3.106CHPCh. 3 - Prob. 3.107CHPCh. 3 - Prob. 3.108CHPCh. 3 - Prob. 3.109CHPCh. 3 - Prob. 3.110CHPCh. 3 - Prob. 3.111CHPCh. 3 - Prob. 3.112CHPCh. 3 - Prob. 3.113CHPCh. 3 - Prob. 3.114CHPCh. 3 - Given the following information, construct a...Ch. 3 - Given the following information, construct a...Ch. 3 - Consider the electronic structure of the element...Ch. 3 - Prob. 3.118MPCh. 3 - Prob. 3.119MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the lattice energy of potassium fluoride, KF, using the BornHaber cycle. Use thermodynamic data from Appendix C to obtain the enthalpy changes for each step. (Note: You will obtain a slightly different answer if you use values given in Chapter 8 for the ionization energy and electron affinity, which are energy values at 0 K rather than the enthalpy changes at 298 K.)arrow_forwardCalculate the lattice energy for LiBr(s) given the following: sublimation energy for Li(s) +166 kJ/mol ΔHf for Br(g) +97 kJ/mol first ionization energy of Li(g) +520. kJ/mol electron affinity of Br(g) –325 kJ/mol enthalpy of formation of LiBr(s) –351 kJ/molarrow_forwardSuppose there is an element X which occurs naturally as X2(g).X2(g) + 2O2(g) → X2O4(g)ΔHof of O(g) is 249 kJ/molΔHof of X(g) is 458.5 kJ/molΔHof of X2O4(g) is 31 kJ/molThe X-X single bond energy is 116 kJ/molUse the above data to estimate the average bond energy in X2O4. Give your answer to the nearest 1 kJ/mol.arrow_forward
- Estimate the change in enthalpy (delta H) for the dissociation for HCl(g) into H+(g) and Cl-(g) Ionization energy for H 1312 kJ/mol Electron affinity for H (-72.8 kJ/mol) Ionization energy for Cl 1251.2 kJ/mol Electron affinity for Cl (-349 kJ/mol)arrow_forwardUsing the following data, calculate the lattice energy of calcium chloride: Ca2+(g) + 2Cl– (g) → CaCl2(s) ΔHlattice = ? Sublimation enthalpy of calcium ΔH = 177.8 kJ/mol First ionization energy of calcium ΔH = 590.2 kJ/mol Second ionization energy of calcium ΔH = 1144.2 kJ/mol First electron affinity of chlorine ΔH = –349 kJ/mol Heat of formation of CaCl2(s) ΔH = –795.4 kJ/mol Bond energy of Cl2 (see Table 2) Use Hess’s law to calculate the lattice energy of calcium chloride. set-up must show all the chemical equations and you must show how their H values add up to give your answer.arrow_forwardChoose the related energy for the following reaction: 2 Cs* (g) + O2- (g) → Cs20 (s) electron affinity ionization energy heat of formation lattice energyarrow_forward
- Given the following information: Heat of sublimation of Li(s) = 166 kJ/mol Bond energy of HF = 565 kJ/mol Ionization energy of Li(g) = 520. kJ/mol Electron affinity of F(g) = –328 kJ/mol Lattice energy of LiF(s) = –1030 kJ/mol Bond energy of H2 = 432 kJ/mol Calculate the net change in energy for the following reaction: 2Li(s)+2HF(g)-> 2LiF(s) +H2(g) Change in energy = kJarrow_forwardThe enthalpy of the formation of ammonium chloride is AH° = -175.9 kJ/mol at 25°C. Calculate the change in energy (AE) for this reaction. NH3(g). + HCl(g) → NH,Cl(s)arrow_forwardCalculate the lattice energy of NaBr(s), given the following thermochemical equations, where A/E and AEA are ionization energy and electron affinity, respectively. Na(s)Na(g) AH = +107 kJ Na(g) Nat(g) + e A/E = +496 kJ -> 1/2 Br₂(g) → Br(g) AHf = +112 kJ - Br(g) + e¯ → Br¯(g) AEA = -325 kJ Na(s) + 1/2 Br₂(g) → NaBr(s) AH = -361 kJ ->> - -1401 kJ -751 kJ +29 kJ -29 kJ +751 kJarrow_forward
- Calculate the second ionization energy of the metal M (AH¡on2 in kJ/mol) using the following data: Lattice enthalpy of MO(s), AH = -2278 kJ/mol Bond dissociation enthalpy of O2(g) = +498 kJ/mol %3D First electron affinity of O = -141 kJ/mol Second electron affinity of O = +744 kJ/mol Enthalpy of sublimation of M = + 125 kJ/mol First ionization energy of M = + 309 kJ/mol Standard enthalpy of formation of MO(s), AHf = -341 kJ/molarrow_forwardThe ionic radii of element E and a different metallic element, M, are shown in the following table: Both elements form oxides, E2O and MO. If lattice energy is defined as the energy required to separate an ionic solid into individual separate gaseous ions, would the lattice energy of MO be less than, equal to, or greater than the lattice energy of the oxide E2O? Justify your answer in terms of Coulomb's lawarrow_forwardAluminum(IV) iodide (AII_(4)) cannot be formed. Explain why this is the case by making reference to the energies involved in formation of this compound.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY